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Abstract: Flooding is one of the climatic change consequences that has become a dangerous threat
to many coastal cities. Pervious concrete is considered a solution to decrease rainwater runoff and
mitigate flood effects, as it allows water to percolate through the ground and prevent possible damage.
Using waste products as aggregates in pervious concrete not only exploits waste materials and makes
it valuable but also reduces the amount of this waste ending in the landfill or harming the environment,
and it decreases the demand for natural resources. Infiltration rate test and compressive strength tests
were conducted to investigate the effect of using waste plastic and/or recycled rubber as concrete
coarse aggregates with different ratios (5%, 10%, 15%, 20%, and 25%) on the pervious concrete.
The results showed that increasing the waste materials in concrete decreased the compressive strength
for all ratios while increased the infiltration rate values.
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1. Introduction

The biggest problem facing the world now is the climate emergency, and it has been ignored for
decades. Professor Raymond Pierrehumbert’s words stress the crucial situation: “Let’s get this on
the table right away, without mincing words. With regard to the climate crisis, yes, it’s time to panic.
We are in deep trouble.” [1] Ice melts by billions of tonnes and this leads to a rise in the sea levels all
over the world (sea levels are rising about three millimetres a year); as a result, many coastal cities
will be partially or totally underwater between 2030 and 2040 [2,3]. Rainforests burned at a record
rate and estimates showed that about 20% of the oxygen produced by the Earth’s land comes from
the Amazon rainforest. Moreover, climatic emergency is one of the main reasons of flood risk [4];
it could concentrate the hydrological cycle, which causes more intense rainfall, leading to increased
frequency and severity of floods. (In the UK, the rainfall in 2015 broke records, receiving 341 mm
within one day, breaking the 2009 record of 316.4 mm). Floods not only caused structural damage
in roads, sewage treatment plants, and energy supplies, but they also caused economic losses—for
example, flood damage costs the UK £1.3 billion every year [5].

Pervious concrete could mitigate flood runoff effects. A pervious or porous concrete is capable
of capturing water on the surface and then allowing it to infiltrate into the subgrade layer and
groundwater, which is one of the best storm water management systems [6]. The main difference
between the traditional concrete and the pervious concrete mixes is eliminating or using a small fraction
of fine aggregate which is responsible for the high porosity and void ratio. The strength of pervious
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concrete is affected by various factors (strength mainly depends on the bonding between cementitious
paste and aggregate particles) including the cement content, water-to-cement ratio, type and level of
compaction, and the quality and the gradation of used aggregates. The key factor of optimization of
pervious concrete mix design is the balance between the strength and permeability [7,8]. The porosity
of concrete is the reason for its permeability; the higher the porosity, the higher permeability which is
defined by the infiltration rate test [9]. However, increasing the porosity of the mixture negatively affect
the compressive strength of concrete [10]. Despite the benefits of pervious concrete, the clogging issue
represents an important limitation for pervious concrete from a hydrologic perspective—for example,
silt, clay-sized materials, algae, and plant roots, which block the pores created in the previous
concrete leading to a reduction on the voids ratio and, consequently, the permeability of the concrete.
Clogging also reduces the effective service life and impedes the widespread application of pervious
concrete [11,12].

On the other hand, the Earth is running out of natural resources. One way to overcome this issue
is recycling the waste materials into existing industries to replace the natural resources. Waste plastic
and recycled rubber are considered the most abundant waste materials generated globally. Waste
plastic increases from only two million tonnes annually in 1950 to about 381 million tonnes in 2015, and
account for 12% of the world total municipal waste annually in 2016 [13,14]. In 2005, about 10 billion
rubber tires were generated worldwide. In the US, four million tonnes of waste tires are generated
every year [15]. The problem is that these wastes can potentially take over a hundred years to break
down when deposited in landfill sites [16]. Another serious issue is that the plastic and rubber wastes
end up getting dumped in the globe’s oceans. Polluting oceans can have catastrophic effects on marine
life and ecosystems, all of which are essential for a balanced and functioning planet [17]. However, we
can lessen the negative effect of that waste by incorporating it in various industries.

Many researchers have studied various types of waste materials to be used as an alternative to
natural aggregates in concrete. For example, recycled aggregate from demolished concrete [18–20],
recycled rubber tires [21–23], post-consumer glass [24,25], steel slag by-products [26–29], and recycled
waste plastic [30–38]. Using waste plastic aggregate on concrete has been evaluated in many studied.
Rahim, N.L. et al. replaced the coarse aggregate with high-density polyethylene (HDPE) by 10%, 20%
and 30%, and the results showed that increasing the waste plastic replacement decrease the compressive
strength by 6%, 19%, and 35%, respectively [39]. Azad A. Mohammed et al. studied the effect of using
plastic waste from PVC waste sheets to partially replace coarse aggregate or fine aggregate up to 85%.
The results indicated a significant decrease in the compressive strength from 41.5 to 16.4 MPa for 85%
fine aggregate replacement and from 41.5 to 8.3 MPa for 85% coarse aggregate replacement [35]. For
all studies, it was reported that using waste plastic aggregates decreased the compressive strength
of the manufacturing concrete [40–45]. The relation between the increasing of infiltration rate and
the decreasing of compressive was also reported.

Researchers also studied the effect of using recycled rubber on the properties of concrete. Sanjeev
Kumar et al. studied various sizes of discarded tyre rubber (from powder to 4 mm) as aggregates
replacement at different levels (from 2.5% to 20%) with different water-to-cement (W/C) ratios.
Compressive strength for all mixes decreased with the addition of discarded rubber; with replacing
20% of rubber, the values declined from 33, 30, and 26.5 N/mm2 to 20, 20, and 17 N/mm2 with 0.40,
0.45, and 0.50 W/C, respectively [46]. Hanbing Liu et al. used two types of waste crumb rubber as
coarse and fine aggregates with four replacement levels (2%, 4%, 6%, and 8%), and the compressive
strength results at 8% replacement decreased by 34% with coarse aggregate replacement, while with
fine aggregate, it was 11%. A slight decrease in the permeability coefficient was also reported [47].
Eshmaiel Ganjian et al. replaced the coarse aggregate with scrap tyre rubber by 5%, 7.5%, and 10%.
The strength lost 21% by replacing 10% of scrap rubber, while the permeability increased by 150% [48].

The main purpose of this study was to investigate the effect of using waste plastic and/or
recycled rubber as a coarse aggregate replacement on the compressive strength and permeability of
pervious concrete.
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2. Materials and Methods

2.1. Material

Ordinary Portland cement was used in this study while satisfying ASTM C150 [49] requirements
(Table 1 shows the chemical composition of cement). Natural sand was used as a fine aggregate. Clean
crushed dolomite was used as a coarse aggregate, waste plastic (WP) was used after it had been
shredded, and recycled rubber (RR) was used with different sizes as shown in Figure 1. Table 2 shows
the properties of natural aggregate and waste plastic used in the mixes.

Table 1. Chemical composition of cement.

Constituents SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O SO3
Ignition

Loss

Cement 20.13% 5.32% 61.63% 3.61% 2.39% 0.37% 0.13% 2.87% ≤0.01%
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Figure 1. Recycled tire rubber, crushed dolomite, and waste plastic aggregates.

Table 2. Physical properties of sand, crushed dolomite, waste plastic, and recycled rubber.

Property. Gravel Sand WP RR

Specific Weight 2.7 2.6 1.3 0.9
Water Absorption (%) 0.60 0.72 NIL NIL
* NIL = almost zero

* NIL =almost zero.

2.2. Mix Design, Preparation of Samples, and Curing

Absolute volume method was used to calculate the mix design. 15 mixes were prepared with
various replacement of gravel by waste plastic and/or recycled tire rubber aggregates (5%, 10%,
15%, 20%, and 25%) by weight to investigate the effect of waste aggregates on the pervious concrete
properties (compressive strength and permeability). Table 2 showed the components details of mixes.
The control mix was prepared with natural coarse aggregates to act as a reference mix.

Concrete components were weighed out and put into plastic bags ready to be added to the mix.
Cement and sand were mixed dry for 3 min, then water was gradually added. The coarse aggregates
(gravel, waste plastic, and/or recycled rubber) were added and mixed until the desired consistency
was reached. The mix was then added to the moulds in three stages; each time, the sample was
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consolidated using a tampering rod. Samples were left to sit for 72 h; then, they were demoulded and
cured in water at the room temperature until the test date as shown in Figure 2. The cement, sand, and
water content were the same for all mixes. Table 3 shows the mixture’s constituents for each mix.
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2.3. Testing

21 × 11 × 6 cm cubes were used to determine the compressive strength in accordance with ASTM
C39 test [50], while for measuring the permeability of the pervious concrete, the infiltration rate test
was conducted in accordance with ASTM C1701 [51]. The tests used an infiltrometer with a single
ring under a constant water head and pre-wetting with 3.60 kg of water. The amount of water used in
the actual infiltration test depended on the pre-wetting time. 18.0 kg of water were used in the case of
the pre-wetting time under 30 s, while 3.6 kg were used if the time was above 30 s. Figure 3 shows
the infiltration rate test. The following formula is used to calculate the infiltration rate:

I =
K M
D2 t

()

where I = infiltration rate (mm/s), K = constant, 4.583 × 109 in SI units, M = mass of the water (kg).
D2 = inside diameter of the perimeter (mm), and t = time for the body of water to infiltrate the pervious
concrete (PC) sample (second).
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Table 3. Mixtures components for each mix (kg/m3).

Mix ID Waste Plastic % Recycled Rubber % Aggregate
(kg/m3)

Waste Plastic
(kg/m3)

Recycled Rubber
(kg/m3) Cement (kg/m3) Sand (kg/m3)

Control 0 0 1515 0 0 290 216
WP-05% 5 0 1443 72 0 290 216
WP-10% 10 0 1371 144 0 290 216
WP-15% 15 0 1299 216 0 290 216
WP-20% 20 0 1227 289 0 290 216
WP-25% 25 0 1154 361 0 290 216
RR-05% 0 5 1443 0 72 290 216
RR-10% 0 10 1371 0 144 290 216
RR-15% 0 15 1299 0 216 290 216
RR-20% 0 20 1227 0 289 290 216
RR-25% 0 25 1154 0 361 290 216

P + R-05% 2.5 2.5 1443 36 36 290 216
P + R-10% 5 5 1371 72 72 290 216
P + R-15% 7.5 7.5 1299 108 108 290 216
P + R-20% 10 10 1227 144 144 290 216
P + R-25% 12.5 12.5 1154 180 180 290 216
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3. Results and Discussion

3.1. Infiltration Rate

Table 4 represents the values of infiltration rate test for each mix. The results showed a significant
increase in the infiltration rate, as the value jumped from 0.31 cm/s to 0.57 cm/s with 25% waste plastic
replacement, which is about 84% higher than the control mix. Increasing the percentage of replacement
of coarse aggregate with plastic waste in concrete increases the permeability as shown in Figure 4.
This could be attributed to the shape and the smooth surface of waste plastic aggregate, which creates
a continuous pathway between pores and increases porosity. Additionally, the insufficient compaction
due to the low density of plastic waste causes more pores [52].Eng 2020, 1, x FOR PEER REVIEW 6 of 12 
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Figure 4. Infiltration rate of pervious concrete with different ratios of waste plastic aggregates (5%,
10%, 15%, 20%, and 25%).

The infiltration rate values for concrete using recycled rubber as a coarse aggregate were illustrated
in Table 5. An increasing trend was observed at all level of replacement. The value increased to reach
its peak at 15% replacement from 0.31 cm/s to 0.50 cm/s with a 61% increase from the control mix.
However, increasing the replacement above 15% led to a decrease in infiltration rate (0.32 cm/s with
25% replacement). Overall, using recycled rubber as coarse aggregates increased the permeability of
concrete mixes as shown in Figure 5. This could be due to the weak pond between recycled rubber
aggregate and cement matrix, and the associated micro cracks which lead to interfacial gap voids.
The non-absorbent nature of the rubber surface and the difference in modulus of elasticity between
cement paste and rubber aggregates plays a vital role in the pond on interfacial transition zone [53].
The author suggests that the decrease occurred when replacement exceeded 15% could be attributed to
the accumulation of the cement paste creating impermeable spots as shown in Figure 6. This could
affect the permeability of the pervious concrete as Suleiman, M. T. et al. reported [54].
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Table 4. Infiltration rate results for waste plastic aggregates replacement.

Mix ID Waste Plastic % Mass of
Water (kg) T1 T2 T3 Mean Time

(sec) D2 (mm) *
Infiltration
Rate (mm/s) I (cm/s)

Control 0 3.6 51.7 52.5 48.2 50.8 2916 3.10 0.31

WP-5% 5 3.6 47.5 44.9 46.1 46.2 2916 3.41 0.34

WP-10% 10 3.6 45.6 42.3 43.5 43.8 2916 3.59 0.36

WP-15% 15 3.6 35.7 35.2 38.9 36.6 2916 4.30 0.43

WP-20% 20 3.6 32.1 30.2 30.1 30.8 2916 5.11 0.51

WP-25% 25 3.6 28.2 26.5 27.4 27.4 2916 5.75 0.57

* Where D = 54 mm.

Table 5. Infiltration rate results for recycled rubber aggregates replacement.

Mix ID Recycled
Rubber %

Mass of
Water (kg) T1 T2 T3 Mean Time

(sec) D2 (mm) *
Infiltration
Rate (mm/s) I (cm/s)

Control 0 3.6 51.7 52.5 48.2 50.8 2916 3.10 0.31

RR-05% 5 3.6 46.6 46 55.4 49.3 2916 3.19 0.32

RR-10% 10 3.6 41.5 40.2 39.3 40.3 2916 3.90 0.39

RR-15% 15 3.6 31.5 32.6 29.6 31.2 2916 5.04 0.50

RR-20% 20 3.6 37.1 35.8 39.4 37.4 2916 4.20 0.42

RR-25% 25 3.6 45.6 50.9 51.4 49.3 2916 3.19 0.32

* Where D = 54 mm.
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Figure 6. Pervious concrete with 25% recycled rubber aggregates after being cured.

Table 6 showed the infiltration rate values for concrete blended with both waste plastic and
recycled rubber as a coarse aggregate. Results showed a linear relationship between the replacement
percentage and the permeability, as increasing the waste aggregates increased the permeability of
the pervious concrete mixes and this trend aligned with the previously reported trends. Figure 7
indicates that permeability increased by 68% with 25% waste aggregates replacement.
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Figure 7. Infiltration rate of pervious concrete blended with different ratios of waste plastic and recycled
rubber aggregates (5%, 10%, 15%, 20%, and 25%).

3.2. Compressive Strength

The compressive strength results for concrete with waste plastic aggregates are represented in
Figure 8a. The results showed that increasing the percentage of waste plastic decreased the compressive
strength significantly. The concrete mix lost about 50% of its strength only after replacing 5% of
coarse aggregate with waste plastic (the strength dropped from 29.5 to 14.5 MPa) while increasing
the replacement to 25% led to over 85% loss in the compressive strength (4.2 MPa with 25% replacement).
These results agree with what other researchers reported [35,36,41,55,56]. This decrease could be due
to the weak pond between the plastic aggregate and the cement paste since the plastic has a smooth
surface which weakens the interfacial transition zone [37,39]. Moreover, plastic is a kind of hydrophobic
material (which makes it water-repelling) and this may limit the water required for cement hydration
from entering through the structure [44].



Eng 2020, 1 161

Table 6. Infiltration rate results for waste plastic and recycled rubber aggregates replacement.

Mix ID Recycled
Rubber %

Waste
Plastic %

Mass of
Water (kg) T1 T2 T3 Mean Time

(sec) D2 (mm) *
Infiltration
Rate (mm/s) I (cm/s)

Control 0 0 3.6 51.7 52.5 48.2 50.8 2916 3.10 0.31

P + R-05% 2.5 2.5 3.6 50.1 47.9 49.1 49 2916 3.19 0.32

P + R-10% 5 5 3.6 46.9 44.2 45.4 45.5 2916 3.90 0.35

P + R-15% 7.5 7.5 3.6 38.9 44 41 41.3 2916 5.04 0.38

P + R-20% 10 10 3.6 36.5 34.7 29.5 33.6 2916 4.20 0.47

P + R-25% 12.5 12.5 3.6 28.1 30.5 31.6 30.1 2916 3.19 0.52

* Where D = 54 mm.
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Figure 8. Compressive strength of pervious concrete with different ratios of aggregates replacement
(5%, 10%, 15%, 20%, and 25%). (a) Waste plastic, (b) recycled rubber, and (c) plastic and rubber.

Figure 8b shows the compressive strength of pervious concrete containing recycled rubber
aggregates as coarse aggregates. A dramatic decrease was observed when replacing the natural coarse
aggregate with recycled rubber by 5% as the strength dropped from 29.5 MPa to 7.5 MPa (the mixture
lost about 74% compared with control mix). The least value was obtained with 20% replacement by
2.9 MPa. The lack of adhesion between recycled rubber aggregates and the cement matrix weakens
the bonding between them and cause a reduction on the compressive strength [47]. It was also
suggested that the specific gravity of the recycled rubber aggregates is lower than the cement paste
which accelerates the propagation of cracks around the rubber particles and consequently the failure
of the samples. These are in addition to the hydrophobic characteristics of rubber particles which
negatively affected the cement hydration process and weakened the concrete [46].

Figure 8c illustrates the compressive strength of pervious concrete blended with both waste plastic
and recycled rubber aggregates with equal percentages. The same declined trend was observed as
a value reached 4.2 MPa with 25% replacement. The lowest compressive strength was obtained with
20% replacement of natural aggregates by around 95% loss in the strength (from 29.5 MPa to 1.4 MPa).

Figure 9 clarifies the relation between the permeability and the compressive strength. It was
obvious that the permeability of concrete tended to decrease with the increase in the compressive
strength [57]. L. G. Li et al. reported that the main two factors affecting the permeability of concrete
are the size of aggregate, which determined the amount of voids in the aggregate and, consequently,
the packing density of the aggregate and the type of compaction [58].



Eng 2020, 1 163

Eng 2020, 1, x FOR PEER REVIEW 9 of 12 

 

rubber particles which negatively affected the cement hydration process and weakened the concrete 
[46]. 

Figure 8c illustrates the compressive strength of pervious concrete blended with both waste 
plastic and recycled rubber aggregates with equal percentages. The same declined trend was 
observed as a value reached 4.2 MPa with 25% replacement. The lowest compressive strength was 
obtained with 20% replacement of natural aggregates by around 95% loss in the strength (from 29.5 
MPa to 1.4 MPa). 

Figure 9 clarifies the relation between the permeability and the compressive strength. It was 
obvious that the permeability of concrete tended to decrease with the increase in the compressive 
strength [57]. L. G. Li et al. reported that the main two factors affecting the permeability of concrete 
are the size of aggregate, which determined the amount of voids in the aggregate and, consequently, 
the packing density of the aggregate and the type of compaction [58]. 

 

Figure 9. The relation between compressive strength and permeability of pervious concrete with 
different waste material replacement. 

4. Conclusions 

In this research study, the effect of replacement of a natural coarse aggregate with waste plastic 
and/or recycled rubber (5%, 10%, 15%, 20%, and 25%) was studied on the compressive strength and 
permeability of pervious concrete, and the following conclusions were made: 

• Using waste plastic and/or recycled rubber as concrete aggregates significantly decreases the 
compressive strength of concrete for all level of replacement. 85% 82%, and 85% of compressive 
strength was lost with 25% replacement with waste plastic, recycled rubber, and a combination 
of both, respectively. 

• The permeability of concrete contains waste plastic and/or recycled rubber increased with the 
increase of the replacement level. Replacing 25% of natural coarse aggregates with waste plastic, 
recycled rubber, and a combination of both increases the permeability values by 83%, 3%, and 
68%, respectively. 

Author Contributions: Methodology, S.A.; investigation, L.C.; writing—original draft preparation, R.B.; 
writing—review and editing, S.A. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Pierrehumbert, R. There is no Plan B for dealing with the climate crisis. Bull. At. Sci. 2019, 75, 215–221, 
doi:10.1080/00963402.2019.1654255. 

2. Kushner, J. The Life and Death of Great Cities in the Time of Climate Change. J. Comp. Urban Law Policy 
2020, 4, 133–217. 

0

0.1

0.2

0.3

0.4

0.5

0.6

29.5 14.5 9.8 7.8 5.8 4.2

Pe
rm

ea
bi

lit
y (

cm
/s

) 

Compressive Str. (Mpa)

RR
P+R
WP

Figure 9. The relation between compressive strength and permeability of pervious concrete with
different waste material replacement.

4. Conclusions

In this research study, the effect of replacement of a natural coarse aggregate with waste plastic
and/or recycled rubber (5%, 10%, 15%, 20%, and 25%) was studied on the compressive strength and
permeability of pervious concrete, and the following conclusions were made:

• Using waste plastic and/or recycled rubber as concrete aggregates significantly decreases
the compressive strength of concrete for all level of replacement. 85% 82%, and 85% of compressive
strength was lost with 25% replacement with waste plastic, recycled rubber, and a combination of
both, respectively.

• The permeability of concrete contains waste plastic and/or recycled rubber increased with
the increase of the replacement level. Replacing 25% of natural coarse aggregates with waste
plastic, recycled rubber, and a combination of both increases the permeability values by 83%, 3%,
and 68%, respectively.
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