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Abstract: A technique devised some years ago permits us to develop a theory regarding a regime of
strong perturbations. This translates into a gradient expansion that, at the leading order, can recover
the Belinsky-Kalathnikov-Lifshitz solution for general relativity. We solve exactly the leading order
Einstein equations in a spherical symmetric case, assuming a Schwarzschild metric under the effect
of a time-dependent perturbation, and we show that the 4-velocity in such a case is multiplied by an
exponential warp factor when the perturbation is properly applied. This factor is always greater than
one. We will give a closed form solution of this factor for a simple case. Some numerical examples
are also given.
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1. Introduction

The study of Einstein equations in certain regimes is often restricted to solving them
numerically [1]. The reason is that they form a set of nonlinear partial differential equations that are
generally difficult to handle with analytical tools for most interesting situations. Often, the reason
relies in the fact that no small parameter can be found to apply to standard perturbation techniques,
while analytical solutions are very rare and difficult to find. Some years ago, a member of our group
(Marco Frasca) proposed an approach based on earlier works on strongly perturbed systems [2]. It was
shown that, under a strong perturbation in the formal limit running to infinity, the leading order
is obtained by neglecting the gradient terms in the Einstein equations. The leading order of this
perturbation series was firstly proposed by Belinsky, Kalathnikov, and Lifshitz for their famous BKL
conjecture [3–5], as is known today.

Some decades ago, Alcubierre proposed a solution for the Einstein equations [6] that describes an
observer moving with an unbounded velocity, provided that the condition of positivity of the energy
is violated. A recent paper [7] (see also references therein) presents a short account of the Alcubierre
metric and its interaction with dust. Indeed, many kinds of pathologies have emerged about it and
the difficulties arise from the fact that this is an engineered metric that is imposed on the Einstein
equations. It would be desirable to have a metric like this one emerging as a solution for the Einstein
equations and conserving the positivity of the energy. A recent proposal works in such a direction [8].
This is possible by introducing a hyperbolic shift vector potential and the author shows how this can
emerge from a plasma.

In this paper, we will show how a warp factor for the velocity can emerge when a strong
perturbation is applied to a spherical symmetric metric. Thus, any Eulerian observer will have its
velocity expanded when such perturbation acts. This extends and completes our preceding work [2].
We will obtain the exact solution for the leading perturbation equations and we will show how an
exponential factor can emerge that is systematically greater than one. We emphasize that we are
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applying perturbation theory in a limit where the a perturbation applied to a given gravitational field
is taken to be much greater than the unperturbed situation. This is the opposite limit to standard small
perturbation theory and is based on the technique devised in [2].

The paper is so structured. In Section 2, we will introduce a technique to treat strongly perturbed
systems. In Section 3, we apply this to the Einstein equations for a spherical symmetry metric with
a time-dependent perturbation. In Section 4, we solve the leading order perturbation equations.
In Section 5, we present the geodesic equations. In Section 6, we show how the expansion factor
enters into the velocity, providing some examples and an analytic solution. In Section 7, conclusions
are presented.

2. Strong Perturbations and Gradient Expansion

For our computations in general relativity, we need to study the case of a strong perturbation
on a given metric: we select the Schwarzschild metric. In order to prove that a gradient expansion
indeed represents a strong perturbation theory, we will study the following non-linear equation as a
toy model for the Einstein equations that can represent Einstein equations in 1 + 1 dimensions [9–11]:

−�φ + λV′(φ) = 0, (1)

where the prime means derivative with respect to φ, � = ∇2 − ∂2
t with ∂t being the time derivative,

∂/∂t, is the wave operator, φ is a scalar field and V(φ) is its self-interaction with a coupling λ. Here
and in what follows, the speed of light is set c = 1. For 2-dimensional Einstein equations, this would
be a Liouville equation [9–11]. We would like to apply perturbation theory in the formal limit of
λ→ ∞. This results in a non-trivial series in 1/λ. We can accomplish our aim by rescaling the time
variable [12]. We take t→

√
λt and the equation above becomes

−∇2φ + λ∂2
t φ + λV′(φ) = 0. (2)

Then, we take

φ = φ0 +
1
λ

φ1 +
1

λ2 φ2 + . . . (3)

and substitute this into Equation (2). This gives the following set of perturbative equations:

∂2
t φ0 = −V′(φ0),

∂2
t φ1 = −V′′(φ0)φ1 +∇2φ0,

∂2
t φ2 = −V′′(φ0)φ2 −

1
2

V′′′(φ0)φ
2
1 +∇2φ1,

etc. (4)

We see that we have obtained a set of non-trivial equations that define the perturbation series in
the formal limit λ→ ∞. This approach can be applied, exactly in this way, to the Einstein equations.
This also shows how consistent was the original BKL approach in [3–5]. Indeed, we have obtained a
gradient expansion.

In order to see how this technique applies to Einstein equations, we express them in the
Arnowitt–Deser–Misner (ADM) formalism as [1] (here and in the following Latin indexes i, j, . . .
run from 1 to 3, Greek indexes run from 0 to 3)

∂tγij − βl∂lγij = γl j∂iβ
l + γil∂jβ

l − 2αKij, (5)

∂tKij − βl∂lKij = Kil∂jβ
l + Kjl∂iβ

l − 2αKilKl
j + αKKij

−1
2

αγlm {∂l∂mγij + ∂i∂jγlm − ∂i∂lγmj − ∂j∂lγmi

+γnp [(∂iγjn + ∂jγin − ∂nγij)∂lγmp
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+∂lγin∂pγjm − ∂lγin∂mγjp ]

−1
2

γnp [(∂iγjn + ∂jγin − ∂nγij)∂pγlm + ∂iγln∂jγmp ]
}

−∂i∂jα +
1
2

γlm(∂iγjm + ∂jγim − ∂mγij)∂lα

+α
[
−8πGTij + 4πGγij(T − ρ)

]
, (6)

where ∂i = ∂/∂xi, G is the Newton constant and the energy–matter tensor Tij is given with the density
ρ, for a metric

ds2 = (−α2 + γijβ
iβj)dt2 + 2βidxidt + γijdxidxj (7)

with α being the lapse function, βi the shift vector, γij the spatial part of the metric and Kij the extrinsic
curvature. For our purposes, we are not interested in constraint equations that are essential only for
numerical computations. This set is amenable to the same treatment we applied to the preceding
example. The procedure is identical: we introduce an ordering parameter λ that we will set to 1 to the
end of computation. Then, we consider the perturbation series defined by

τ =
√

λt, (8)

Kij =
√

λ

(
K(0)

ij +
1
λ

K(1)
ij +

1
λ2 K(2)

ij + . . .
)

,

γij = γ
(0)
ij +

1
λ

γ
(1)
ij +

1
λ2 γ

(2)
ij + . . . ,

α = α0 +
1
λ

α1 +
1

λ2 α2 + . . . .

Our gauge choice is to set the shift vector βi = 0. This approach mirrors completely the standard
computation for weak gravitational fields but implies that the perturbation is taken formally to reach
infinity. This represents a situation where the perturbation overcomes the intensity of the gravitational
field where it is applied. Typical situations where this technique could apply include black hole
collisions, where, currently, only numerical computations or analytical techniques, working given
certain approximations, are available [13]. Therefore, we obtain the following non-trivial set of
equations (we have set λ = 1):

∂tγ
(0)
ij = −2α0K(0)

ij , (9)

∂tγ
(1)
ij = −2α1K(0)

ij − 2α0K(1)
ij ,

...

∂tK
(0)
ij = −2α0K(0)

il Kl(0)
j + α0K(0)K(0)

ij

∂tK
(1)
ij = −2α1K(0)

il Kl(0)
j − 2α0K(1)

il Kl(0)
j − 2α0K(0)

il Kl(1)
j

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

−1
2

α0γlm(0)
{

∂l∂mγ
(0)
ij + ∂i∂jγ

(0)
lm − ∂i∂lγ

(0)
mj − ∂j∂lγ

(0)
mi

+γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂lγ

(0)
mp

+∂lγ
(0)
in ∂pγ

(0)
jm − ∂lγ

(0)
in ∂mγ

(0)
jp ]

−1
2

γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂pγ

(0)
lm + ∂iγ

(0)
ln ∂jγ

(0)
mp ]

}
−∂i∂jα0 +

1
2

γlm(0)(∂iγ
(0)
jm + ∂jγ

(0)
im − ∂mγ

(0)
ij )∂lα0

+α(0)
[
−8πGTij + 4πGγ

(0)
ij (T − ρ)

]
,
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etc. (10)

where one sees that the energy–matter tensor contributes to the next-to-leading order. We realize from
these equations that the gradient terms—that is, components of the metric that vary spatially—are
moved to the next-to-leading order. We will apply them in the following in the spherical symmetric case,
assuming the Schwarzschild metric as the unperturbed solution. Here, and in the following, we avoid
showing explicitly the energy–matter tensor as our perturbation series moves its contribution to the
next-to-leading order. This implies that, at the leading order, an approximation for the energy–matter
configuration can be taken to be that in absence of the gravitational field. This is consistent with our
approach for strongly perturbed metrics.

Nevertheless, in order to gain insight into the main concept underlying this approximation
scheme, let us consider the Reissner–Nördstrom metric of a charged black hole. This will be given by

ds2 = −
(

1−
rg

r
+

r2
Q

r2

)
dt2 +

(
1−

rg

r
+

r2
Q

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (11)

with rg = 2GM being the Schwarzschild radius for a mass M and r2
q = GQ2/4πε0 the scale introduced

by the black hole charge Q with 1/4πε0 the Coulomb constant. This is an exact solution for the
Einstein–Maxwell equations. In our case, we assume that the electric field overcomes largely the
gravitational contribution—that is, rQ � rg. This appears formally as a large perturbation on a
Schwarzschild black hole and the approximate metric will be

ds2 = −
(

1 +
r2

Q

r2

)
dt2 +

(
1 +

r2
Q

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 +O(rg/r). (12)

This should be compared with the opposite dual limit rQ/rg � 1, which yields

ds2 = −
(

1−
rg

r

)
dt2 +

(
1−

rg

r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 +O(r2

Q/r2). (13)

3. Strongly Perturbed Spherical Symmetry Metric

We assume a spherical symmetry metric in ADM formalism given by

ds2 = −α2dt2 + γrrdr2 + γθθdθ2 + γφφdφ2. (14)

This implies a specific choice of the gauge where all the components of the shift vector, normally
named βi, are taken to be zero. Then, the perturbation α1 is applied to the lapse function as follows [1]:

α2 = α2
0 + α1. (15)

Then, we specialize the set of Equation (9) to this case. Assuming the Schwarzschild solution as the
unperturbed solution, the exterior solution is given by (again, rg = 2GM is the Schwarzschild radius)

α2
0 =

(
1−

rg

r

)
, (16)

γ
(0)
11 =

1
1− rg

r

,

γ
(0)
22 = r2, γ

(0)
33 = r2 sin2 θ,
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and the interior solution is

α2
0 =

1
4

3
√

1−
rg

rs
−

√
1−

r2rg

r3
s

2

, (17)

γ
(0)
11 =

(
1−

r2rg

r3
s

)−1

,

γ
(0)
22 = r2 γ

(0)
33 = r2 sin2 θ,

where rs is the value of the r-coordinate at the body’s surface. It is easy to see that both metrics are
the same at the sphere surface for r = rs, granting continuity. We also have, with our gauge’s choice
βi = 0, the general formula

Kij = −
1

2α
∂tγij. (18)

In our case, this is
α2 = α2

0 + α1 = α2
0 + A f (r, t), (19)

where A is the amplitude of the perturbation. We emphasize that the perturbations which we will
consider are time-dependent. This yields

∂tγ
(1)
ij = α1

1
α0

∂tγ
(0)
ij − 2α0K(1)

ij , (20)

which reduces to
∂tγ

(1)
ij = −2α0K(1)

ij , (21)

as γ
(0)
ij does not depend on the time variable. Now, one has

∂tK
(1)
ij = −2α1K(0)

il Kl(0)
j − 2α0K(1)

il Kl(0)
j − 2α0K(0)

il Kl(1)
j (22)

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

−1
2

α0γlm(0)
{

∂l∂mγ
(0)
ij + ∂i∂jγ

(0)
lm − ∂i∂lγ

(0)
mj − ∂j∂lγ

(0)
mi

+γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂lγ

(0)
mp

+∂lγ
(0)
in ∂pγ

(0)
jm − ∂lγ

(0)
in ∂mγ

(0)
jp ]

−1
2

γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂pγ

(0)
lm + ∂iγ

(0)
ln ∂jγ

(0)
mp ]

}
−∂i∂jα0 +

1
2

γlm(0)(∂iγ
(0)
jm + ∂jγ

(0)
im − ∂mγ

(0)
ij )∂lα0,

etc.

This set of equations, written in this way, is too difficult to manage. As we will see below, we can
restate them to find an exact leading order solution.

It is correct to ask why the Birkhoff theorem does not apply in our case. The reason is that the
problems we are treating are similar to that of the ringdown of a Schwarzschild black hole, where
a strong perturbation, due to the collision between two black holes, modifies the metric, making it
vary in time, after coalescence, until the oscillations are damped out and the spherical symmetry is
recovered [14], in agreement with the Birkhoff theorem. It should be noted that such problems are
better managed in the Kerr metric but we do not consider rotations to avoid too many computations
cluttering the formulas.
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4. Solving Perturbation Equations

In order to obtain more manageable equations, let us start from the following rewriting of the
ADM equations of motion in exact form. We will obtain (as already stated, our gauge is βi = 0)

∂tγij = −2αKij,

∂tKij = α
[

Rij − 2KilKl
j + KKij

]
− ∂i∂jα. (23)

The Ricci tensor Rij refers to the γij. We can exploit these equations for the diagonal elements
to obtain

∂tγ11 = −2αK11,

∂tγ22 = −2αK22,

∂tγ33 = −2αK33,

∂tK11 = α
[

R11 − 2K1lKl
1 + KK11

]
− ∂2

1α,

∂tK22 = α
[

R22 − 2K2lKl
2 + KK22

]
− ∂2

2α,

∂tK33 = α
[

R33 − 2K3lKl
3 + KK33

]
− ∂2

3α. (24)

We notice that Kl
i = γklKik and K = γklKkl .

We expect that off-diagonal terms should be perturbatively negligible and so we neglect them
here in view of a gradient expansion. Indeed, for i 6= j, we will have

Kij = −
∂tγij

2α
,

∂tKij = α
[

Rij − 2Kilγ
lkKjk + γklKklKij

]
− ∂i∂jα. (25)

This will give

− ∂t

(
∂tγij

2α

)
= α

[
Rij +

1
2α2 ∂tγilγ

lk∂tγjk +
1

4α2 γkl∂tγkl∂tγij

]
− ∂i∂jα. (26)

In a gradient expansion, where we neglect both Rij and ∂i∂jα as we will show below, at the leading
order, the off-diagonal terms will remain zero if they were zero initially because this is a solution for
Equation (26) for i 6= j. Therefore,

∂tγ11 = −2αK11, (27)

∂tγ22 = −2αK22,

∂tγ33 = −2αK33,

∂tK11 = α
[

R11 − γ11K2
11 + (γ22K22 + γ33K33)K11

]
− ∂2

1α,

∂tK22 = α
[

R22 − γ22K2
22 + (γ11K11 + γ33K33)K22

]
− ∂2

2α,

∂tK33 = α
[

R33 − γ33K2
33 + (γ11K11 + γ22K22)K33

]
− ∂2

3α.

These equations can be expressed in a single set of equations for the γs as (the dot implies the
derivation with respect to τ)

∂2
t γ11 = −2α̇K11 − 2αK̇11 =

α̇

α
γ̇11 − 2α2

[
R11 − γ11 1

4α2 (γ̇11)
2 +

1
4α2 γ22γ̇22γ̇11 +

1
4α2 γ33γ̇33γ̇11

]
+ 2α∂2

1α,
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∂2
t γ22 = −2α̇K22 − 2αK̇22 =

α̇

α
γ̇22 − 2α2

[
R22 − γ22 1

4α2 (γ̇22)
2 +

1
4α2 γ11γ̇11γ̇22 +

1
4α2 γ33γ̇33γ̇22

]
+ 2α∂2

2α,

∂2
t γ33 = −2α̇K33 − 2αK̇33 =

α̇

α
γ̇33 − 2α2

[
R33 − γ33 1

4α2 (γ̇33)
2 +

1
4α2 γ11γ̇11γ̇33 +

1
4α2 γ22γ̇22γ̇33

]
+ 2α∂2

3α. (28)

and so on for the other components. As stated in Section 3, this set of equations can be solved
perturbatively by the change in variable τ =

√
λt being λ just an ordering parameter that we will set

to 1 until the end of the computations. This means that we can neglect spatial gradients at the leading
order, yielding

∂2
τγ11 =

α̇

α
γ̇11 +

1
2

γ11(γ̇11)
2 − 1

2
γ22γ̇22γ̇11 −

1
2

γ33γ̇33γ̇11 =

α̇

α
γ̇11 +

1
2
(γ11)

−1(γ̇11)
2 − 1

2
(γ22)

−1γ̇22γ̇11 −
1
2
(γ33)

−1γ̇33γ̇11. (29)

This can be rewritten as

∂2
τγ11 = γ̇11

d
dτ

[
ln α +

1
2

ln
(

γ11

γ22γ33

)]
. (30)

Then,

∂τ ln γ̇11 =
d

dτ

[
ln α +

1
2

ln
(

γ11

γ22γ33

)]
, (31)

and finally

ln γ̇11 =

[
ln
(

rk
α

α0

)
+

1
2

ln
(

γ11

γ22γ33

)]
, (32)

where we have properly fixed the integration constant in such a way that, in the absence of perturbation,
the contribution from α disappears, while dimensions are kept with the constant rk = rg for the exterior
solution and rk = rs for the interior solution. This gives the following set of differential equations:

γ̇11 = rk
α

α0

√
γ11

γ22γ33
= rk

α

α0
γ11γ−

1
2 ,

γ̇22 = rk
α

α0

√
γ22

γ11γ33
= rk

α

α0
γ22γ−

1
2 ,

γ̇33 = rk
α

α0

√
γ33

γ11γ22
= rk

α

α0
γ33γ−

1
2 . (33)

This set can be solved exactly by multiplying in the following way:

γ̇11γ22γ33 = rk
α

α0
γ

1
2 ,

γ̇22γ11γ33 = rk
α

α0
γ

1
2 ,

γ̇33γ11γ22 = rk
α

α0
γ

1
2 , (34)

and summing up the three equations obtained in this way, giving

γ̇ = 3rk
α

α0
γ

1
2 , (35)
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which has as a solution

γ(t) =
[

3
2

rkα−1
0

∫ t

0
α(t′)dt′ +

√
γ(0)

]2
, (36)

and, e.g., one has

γ(0) = |γ(0)
11 γ

(0)
22 γ

(0)
33 | =

r4 sin2 θ

1− rg
r

. (37)

for the exterior solution. This yields the following set of equations:

γ̇11 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ11,

γ̇22 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ22,

γ̇33 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ33. (38)

These can be solved exactly by

γ11(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
11 ,

γ22(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
22 ,

γ33(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
33 . (39)

We can derive the volume expansion from Equation [6]

Θ = −αTrK = −αγijKij =
1
2

γijγ̇ij, (40)

and Kij are given by Equation (18). Then,

Θ =
3
2

rkα−1
0 α

3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
. (41)

Here, we can see the first appearance of the expansion (warp) factor given by

U(r, θ, t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
. (42)

As we will see, this is always greater than one.

5. Geodesic Equations

For the sake of completeness, we give below the geodesic equations in such a perturbed metric.
For this aim, we need to consider

ds2 = −α2(r, t)dt2 + γ11(r, θ, t)dr2 + γ22(r, θ, t)dθ2 + γ33(r, θ, t)dφ2. (43)
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From this, it is easy to derive the Lagrangian,

L = −
(
−α2(r, t)ṫ2 + γ11(r, θ, t)(ṙ)2 + γ22(r, θ, t)θ̇2 + γ33(r, θ, t)φ̇2

) 1
2 , (44)

where the dot means derivative with respect to the proper time s. Then, using the Euler–Lagrange
equations, one has

d
ds

(
α2 ṫ
)
− 1

2
∂α2

∂t
ṫ2 +

1
2

∂γ11(r, θ, t)
∂t

ṙ2 +
1
2

∂γ22(r, θ, t)
∂t

θ̇2 +
1
2

∂γ33(r, θ, t)
∂t

φ̇2 = 0,

d
ds

(γ11ṙ) +
∂α2

∂r
ṫ2 − ∂γ11(r, θ, t)

∂r
ṙ2 − ∂γ22(r, θ, t)

∂r
θ̇2 − ∂γ33(r, θ, t)

∂r
φ̇2 = 0,

d
ds
(
γ22θ̇

)
− ∂γ11(r, θ, t)

∂θ
ṙ2 − ∂γ22(r, θ, t)

∂θ
θ̇2 − ∂γ33(r, θ, t)

∂θ
φ̇2 = 0,

d
ds

(γ33φ̇) = 0. (45)

Then, finally

d
ds

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, θ, t)
∂t

ṙ2 +
1
2

∂γ22(r, θ, t)
∂t

θ̇2 +
1
2

∂γ33(r, θ, t)
∂t

φ̇2 = 0,

d
ds

[γ11(r, θ, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, θ, t)

∂r
ṙ2 − 1

2
∂γ22(r, θ, t)

∂r
θ̇2 − 1

2
∂γ33(r, θ, t)

∂r
φ̇2 = 0,

d
ds

[γ22(r, θ, t)θ̇]− 1
2

∂γ11(r, θ, t)
∂θ

ṙ2 − 1
2

∂γ22(r, θ, t)
∂θ

θ̇2 − 1
2

∂γ33(r, θ, t)
∂θ

φ̇2 = 0,

d
ds

[γ33(r, θ, t)φ̇] = 0. (46)

For a full radial motion, we can set θ = π/2, yielding

d
ds

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, t)
∂t

ṙ2 +
1
2

∂γ33(r, t)
∂t

φ̇2 = 0,

d
ds

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, t)

∂r
ṙ2 − 1

2
∂γ33(r, t)

∂r
φ̇2 = 0,

d
ds

[γ33(r, t)φ̇] = 0. (47)

The last equation of the set can be integrated out to give

φ̇ =
A

γ33(r, t)
, (48)

where A is an integration constant. This can be substituted into the other two to give

d
ds

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, t)
∂t

ṙ2 +
1
2

∂γ33(r, t)
∂t

A2

γ2
33(r, t)

= 0,

d
ds

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, t)

∂r
ṙ2 − 1

2
∂γ33(r, t)

∂r
A2

γ2
33(r, t)

= 0. (49)

Now, we know from Equation (39) that

γ11(r, t) = U(r, t)γ(0)
11 ,

γ33(r, t) = U(r, t)γ(0)
33 , (50)
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and then

d
ds

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂U(r, t)
∂t

[
ṙ2γ

(0)
11 +

A2

U2(r, t)γ(0)
33

]
= 0,

d
ds

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂U(r, t)

∂r

[
ṙ2γ

(0)
11 +

A2

U2(r, t)γ(0)
33

]
= 0. (51)

This set can be solved only numerically. Therefore, this approach does not lend itself to a
straightforward computation of the radial velocity.

6. Radial Velocity

We consider a particle of mass m moving in our metric. The definition of momenta is given by

pα = gαβ pβ. (52)

This yields the following dispersion relation:

pα pα = −m2. (53)

Similarly, we can derive the 4-velocity from this and it is given by

uα = (−α2 ṫ, γ11ṙ, γ22θ̇, γ33φ̇). (54)

Then, the radial motion will be characterized by

vr =
γ11

α

dr
dt

=
U(r, θ, t)
α(r, θ, t)

γ
(0)
11

dr
dt

. (55)

One obtains a warp factor, arising from the applied perturbation,

U(r, t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
, (56)

and we realize that, with this geometry, we can achieve exponential growth of the radial velocity
depending on the applied perturbation.

We can provide a closed form solution for a very simple case, a toy model. We take for a perturbation

α1(t) =
t
η

, (57)

with η being a constant. This is a linear time increasing term. Then,

α2(r, t) = α2
0(r) +

t
η

. (58)

Then,

U(r, t) = exp

rkα−1
0 (r)

∫ t

0
dt′′

√
α2

0(r) +
t′′
η

3
2 rkα−1

0 (r)
∫ t′′

0

√
α2

0(r) +
t′
η dt′ +

√
γ(0)

 . (59)
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This yields

U(r, t) = exp

rkα−1
0 (r)

∫ t

0
dt′′

√
α2

0(r) +
t′′
η

3
2 rkα−1

0 (r)η
[

2
3

(
α2

0(r) +
t′′
η

) 3
2 − 2

3 α0(r)
]
+
√

γ(0)

 . (60)

and

U(r, t) = exp

rkα−1
0 (r)

3
2

η
∫ 2

3

(
α2

0(r)+
t
η

) 3
2

2
3 α0(r)

dx
1

3
2 rkα−1

0 (r)η
[
x− 2

3 α0(r)
]
+
√

γ(0)

 . (61)

The final result is

U(r, t) =
a
(

α2
0(r) +

t
η

) 3
2 − b

aα3
0(r)− b

, (62)

with a = rkηα−1
0 (r) and b = rkη −

√
γ(0). We can see that this factor is always greater than one (this

value is taken for t = 0) and increases as time increases.
From the formula for radial velocity, we can derive the force. This will be obtained by the first

derivative of Equation (55). This yields

dvr

dτ
=

d
dτ

[
γ11

dr
dτ

]
. (63)

This gives, for a mass M,

F = M
dvr

dτ
= M

dt
dτ

dγ11

dt
dr
dτ

+ γ11
d2r
dτ2 . (64)

This gives,

F = M
dvr

dτ
= M

1
α

dγ11

dt
dr
dτ

+ γ11
d2r
dτ2 . (65)

In our toy model, we consider α0 ≈ 1 and γ
(0)
11 ≈ 1, so that

dγ11

dt
=

a
η

(
1 + t

η

) 1
2 − db

dt

a− b
+

a
(

1 + t
η

) 3
2 − b

(a− b)2
db
dt

. (66)

This yields,

dγ11

dt
≈

rk

(
1 + t

η

) 1
2
+ 2r dr

dt

r2 +
rkη
(

1 + t
η

) 3
2 − rkη + r2

r4 2r
dr
dt

. (67)

Then, we obtain

F ≈ M
(

1 +
t
η

)− 1
2

 rk
r2

(
1 +

t
η

) 1
2
+

2
r

dr
dt

+
2rkη

(
1 + t

η

) 3
2 − 2rkη + 2r2

r3
dr
dt

 dr
dt

+M
rkη
(

1 + t
η

) 3
2 − rkη + r2

r2
d2r
dτ2 . (68)
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with the simple kinematic law of motion r(t) = r0 + v0t, it is easy to obtain

F ≈ Mv0
rk

r2(t)
+ 2M

(
1 +

t
η

)− 1
2 v2

0
r(t)

+

M
(

1 +
t
η

)− 1
2 2rkη

(
1 + t

η

) 3
2 − 2rkη + 2r2(t)

r3(t)
v2

0. (69)

Force is non-null and dependent on the initial velocity and the sphere radius. It is interesting to
note that the force tends towards zero as time increases but this corresponds to the unphysical case of
a perturbation which is never turned off. This equation simplifies significantly if we can neglect the
terms dependent on rk. One has

F ≈ 3M
(

1 +
t
η

)− 1
2 v2

0
r(t)

. (70)

This result is independent of the sphere geometry or the Schwarzschild radius. Such a perturbation
is not completely physical. Thus, we considered some others with the characteristic of being practically
realizable. Considering the interior solution, for a perturbation like α1 = At2, we obtain Figure 1 and
for a sinusoidal perturbation we get Figure 2.

Figure 1. Warp factor for a t2 perturbation with an equation of motion r(t) = h0 + v0t.



Physics 2020, 2 677

Figure 2. Warp factor for a sin(ωt) perturbation with frequency 1 MHz and equation of motion
r(t) = h0 + v0t + kt2 .

As expected from the toy model, the warp factor is always greater than one and can reach
significantly large values depending on the applied perturbation.

7. Conclusions

We have solved the Einstein equations for a strong perturbation in the case of a spherical
symmetry solution. In this case, the perturbation series reduces to the case of a gradient expansion
and the equations are amenable to an exact analytical treatment. We were able to show that, when a
perturbation is properly applied, there appears a multiplicative warp factor on the radial velocity that
can, in this way, increase exponentially in time. This warp effect does not require significant energy
and everything is completely in the realm of positive energy solutions of the Einstein equations, even
if as a perturbation series.

We hope these results will find some application in the near future.
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