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Abstract: This article traces the development of coordination chemistry and shows how progress in
the science has been paralleled by the development of a vocabulary and nomenclature to describe
new concepts, structural features and compound types.
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1. Introduction

In early cultures, knowledge of the “true” name of an object or a person gave power [1,2].
The identity of the name with a true understanding of an object is nowhere more important than in the
natural sciences. Coordination chemistry is concerned with compounds formed by the interaction
of ligands with metal centres and its history is the story of chemistry in microcosm. In general
scientific discussion, it is necessary to establish both the identity and the structure of chemical
entities—“is my pink cobalt complex the same as your pink cobalt complex? What is it anyway?”
The development of coordination chemistry has been characterized by a search for identity and
understanding. Understanding the development of the systematics of nomenclature allows us
to understand the development of chemistry itself. This article looks at the development of the
nomenclature of coordination compounds from the earliest times to the modern dominance of the
International Union of Pure and Applied Chemistry (IUPAC) as the arbiter for, and regulator of,
nomenclature for the chemistry community. I will trace the need-driven evolution of nomenclature
from a desire to establish a unique identity for an individual compound, through nomenclature that
indicates composition and relationships to other known compounds, to systems that describe both
composition and three-dimensional structure. As the information content of the nomenclature increases,
I also note that the ease of correct human interpretation of that information often decreases. In the
future, the search for chemical information will increasingly be computer based and there is a need to
develop both new algorithms and artificial intelligence methods for defining, storing and retrieving
structural data. The descriptors for unique chemical identification are unlikely to resemble modern
nomenclature systems. This highlights a divergence in the philosophy of chemical nomenclature and
the recognition that machines and people will need different grammars.

The spelling, capitalization and abbreviations used in text extracts and citations correspond to
those in the original. The only exception is that the long s (

∫
) found in early manuscripts is transcribed

into the modern round s form [3]. Where printed names in the literature differ from contemporary
usage, the literature form is used; for example, in the references from the German literature, S.M.
Jörgensen is used instead of S.M. Jørgensen. The author is responsible for all errors and loss of nuance
in any translations. In the course of the last 250 years, many journals have changed their titles and
sequence of volume numbering; where possible, the journal abbreviation corresponds to the Chemical
Abstracts Service Source Index (CASSI) recommendation for the appropriate year of publication [4].
The reader should also note that many of the early journal titles have been subsumed into modern
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journals and the originals are not always simple to identify and locate—caveat emptor. Finally, where
formulae are given for compounds, they generally correspond to the modern formulation; the literature
in the 19th century CE is particularly confusing because of unclear and inconsistent usage of equivalent
(proportional) and atomic weights, stemming back to Dalton’s assumption of the formulae HO and
NH for water and ammonia, respectively, together with the belief that oxidation must involve the
addition of oxygen atoms (the electron was only discovered in 1897). Occasionally, the contemporary
formulae will be presented for interest.

2. Early History of Coordination Chemistry

Coordination chemistry as a discipline is relatively new, first emerging in an identifiable form in
the 19th century CE. This section traces the scientific development of coordination chemistry up to
that time.

2.1. From Prehistory to History

The prehistory of coordination chemistry is very simple—there is virtually none [5,6]! Although
coordination compounds have a long and honourable history of application, they were not recognized
or systematically studied until the modern era. Coordination chemistry, like metallurgy, is a discipline
in which technological and æsthetic application predated scientific investigation. Colour has been
fundamental to the cultural and historical development of modern society and is a characteristic of
coordination chemistry [7].

Probably one the first applications of coordination chemistry was the use of mordants to fix dyes
to fibres [8] and there is evidence for the dying of cloth from 7000 BCE. The earliest dyes came from
natural sources, such as plants, lichen, insects or fungi. These were extracted with water and transferred
to the cloth by immersion of the fabric in the dye solution [9,10]. Some dyes alone gave good and
permanent colours which did not wash off, but others only bound when additional substances, called
mordants (French mordre, to bite), were present. Many of the commonest mordants are simple metal
salts, in particular those of aluminium, copper, iron, chromium and tin. An early dye obtained from
the root of the madder plant, Rubia tinctorum, contains alizarin (Figure 1) [11]. The general features
responsible for binding the dye to a fibre involve metal ions coordinating to oxygen atoms of the
alizarin and of the cloth—as a result, the dye is not removed from the fabric in a normal washing
cycle. The red dyes entered popular culture and the description of British soldiers of the 18th and 19th
centuries CE as “redcoats” refers to the use of Turkey Red (alizarin with an aluminium mordant) to
dye their jackets. Trivial names such as Turkey Red identify the colouring material but give no clue as
to their chemical constitution.

It is almost inconceivable that the alchemists and iatrochemists did not encounter coordination
compounds, but there is little or no surviving documentary evidence. As “ammoniakal liquors” were
prevalent in the alchemical oeuvre, which in turn was obsessed with the transformation of metals
(in particular base metals to gold), it is certain that the characteristic colours of ammine complexes must
have been observed. The earliest empirical description is due to the work of Andreas Libavius at the
end of the 16th century CE who described a blue colour in the reaction of brass (an alloy of copper and
zinc) with aqueous ammonia (aqua calcis, in qua sal ammonius solutus sit, eodem [caeruleo] colore tingitur
super orichalco; si aquam calcis cum sale ammonio ponas per noctem in pelui orichalcea, caerulea euadit; lime
water, in which sal ammoniac is dissolved, gives vivid [blue] colours with copper; if thick brass armour
is left overnight in a basin containing lime water and sal ammoniac, a blue colour emerges) [12].
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2.2. Location, Location, Location

By the early Middle Ages, a body of chemical knowledge was developing in the European and
Arabian spheres of influence, and individual chemical compounds began to be identified. In contrast
to today, early chemistry is characterized less by awareness of individual researchers and their
communication, but more by an awareness of the evolving and accumulated body of wisdom that
entered the communal knowledge. Where chemical compounds were individually identified, the names
were more often associated with their geographical origin than their chemical properties. Examples
include elements such as copper (named after Cyprus) or compounds such as Tyrian purple (after Tyre,
an ancient Phoenician port), Egyptian blue (an artificial lapis lazuli prepared in the Middle East from
malachite), or Paris Green (Cu(CH3CO2)2·3Cu(AsO2)2).

Coordination chemistry enters this arena around 1704 when Diesbach accidentally prepared a
new blue pigment (Figure 2a) which became known as Prussian blue (Preussisch blau) or Berlin blue
(Berlinisch blau) [14–16]. The new blue pigment was rapidly commercialized and made available for
purchase, with the first painting using it, The Entombment of Christ by Pieter van der Werff, dated 1709.
Diesbach never revealed his method of preparation and the first reliable description dates from
1724 [17,18]. Following the publication of the recipe, the same pigment was prepared in France and
subsequently sold as Paris blue [19–21]. Prussian blue and Turnbull’s blue were originally formulated
as iron(III) hexacyanidoferrate(II) and iron(II) hexacyanidoferrate(III), respectively, but subsequently
shown to be the same [22,23]. The crystal structure of Fe4[Fe(CN)6]3·xH2O was only determined in
1977 and an idealized representation is given in Figure 2b. Prussian blue continues to be an important
pigment with some 12 million kilograms being prepared annually, primarily for use in inks, and has
had societal impact, ranging from the characteristic blue colour of the uniforms of the Prussian infantry
of the 18th and 19th centuries CE, through engineers’ “blueprints” to the trivial name of “prussic acid”
for hydrocyanic acid, much loved as a poison by detective writers. One of the very earliest fictional
descriptions of the use of cyanide as a poison comes from the author and poet Letitia Elizabeth Landon,
in her book Ethel Churchill, or, the two brides [24] from 1837 CE. This work is of note as it is set in 1725
CE and describes the fictional preparation of hydrocyanic acid some 50 years before its real-world
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isolation by Scheele [25]. It is sad to mention that Letitia Elizabeth Landon herself died in 1838 by
deliberately or accidentally drinking prussic acid [26]. Even the name cyanide links us back to the blue
colour of the compound from which it was prepared (ancient Greek, κύανoς, kyanos, blue). Heating
Prussian blue generated an orange–brown pigment called Prussian brown, which indicates a chemical
relationship between the two compounds, but gives little further information.
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In conclusion, historical names for the identification of coordination compounds with the place of
discovery or preparation served a useful role, but was neither consistent nor sustainable and gave
no information regarding constitution and little concerning the relationships among compounds.
Individual compounds frequently had multiple and unrelated names.

2.3. A Neglected Study of Platinum Chemistry

Most accounts of the development of coordination chemistry now move directly to the beginning
of the 19th century CE. Nevertheless, the last half of the 18th century CE sees a remarkable, and often
neglected, publication showing how the modern scientific method was becoming accepted and also
providing one of the earliest detailed descriptions of the behaviour of coordination compounds in
solution. In Commercium Philisophico-technium; or, The Philosophical Commerce of Arts: designed as An
Attempt to Improve Arts, Trades, and Manufactures, William Lewis describes inter alia studies on gold and
platinum (Figure 3) [27]. He reports the yellow colour of the [AuCl4]− ion after dissolution of gold in
aqua regia and also the isolation of solid Na[AuCl4] and H[AuCl4]. The description of the chemistry of
platinum is especially complete and precise and includes the dissolution of the metal in aqua regia,
the isolation of solid hexachloridoplatinate(IV) species and some red or yellow materials from reaction
with ammonium chloride likely to be the [Pt(NH3)2Cl2] isomers.

Although the experimental scientific aspects were well developed in this remarkable work, there is
little if any knowledge of the constitution of the materials or attempt to uniquely identify them with
names containing chemical information.
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on gold and platinum, in the Commercium Philisophico-technium; or, The Philosophical Commerce of Arts;
designed as An Attempt to Improve Arts, Trades, and Manufactures, William Lewis describes inter alia
studies on gold and platinum [27].

3. The Modern Era

3.1. A New Millennium and New Visions—The Start of the 19th Century of the Common Era

To summarize the story to date, at the beginning of the 19th century CE, inorganic materials were
generally identified by names (or symbols) with origins lost in antiquity. Coordination compounds were
a rare and exotic breed with names often associated with their geographical origin. An example of the
lack of system is seen in “The list of simples, &c”, given by Buchan in 1790 [28]. Here, under “Mercury”,
we find entries for: crude, calcinated, Aethiops mineral, calomel, corrosive sublimate, red precipitate
and white precipitate. In modern terms, these refer to mercury metal, HgO, HgS, Hg2Cl2, HgCl2, HgO
and [Hg(NH3)2Cl2] (or [Hg(NH2)Cl]), respectively. Even in Buchan, we find two names for mercury(II)
oxide, which was also known variously as red oxide of mercury, red pulvis solaris, pulvis serpentum,
mercurius praecipitatus, hydrargyri nitrico-oxidum, hydrargyri oxidum rubrum, deutoxide of mercury,
binoxide of mercury, peroxide of mercury or calx of mercury, amongst others. Collections of information
about medicinal compounds and preparations were known as pharmacopoeia, and in the course of
the 18th century CE the nomenclature of compounds for medicinal use in pharmacopoeia became
a contentious issue. Although the modern-thinking doctors and apothecaries recognized the needs
for consistency and unambiguity in identifying substances to be used in medicine, the conservatism
inherent in the profession resulted in a tendency to retain the old-fashioned and obscure nomenclature
of the alchemical era. To address this, the Royal College of Physicians in London published in 1742
proposals for a reform of their pharmacopoeia [29], although these were critically received, with Wilcock
commenting, “How comes it then to pass, that a work so necessary to the public health, should be so ill executed?
that a work well becoming the dignity of physicians to prosecute with the utmost attention, and finish with the
greatest care, should fall so far short of any degree of perfection, as to be so full of mistakes and inaccuracies,
that the most ignorant cannot omit seeing them” [30]. The full reform of the pharmacopoeia did not occur
until the beginning of the 19th century CE [31,32].

3.2. Some First Approaches to Systematics

In the course of the 18th century CE, it became increasingly clear that scientific progress in
chemistry was being hindered by the lack of a clear and universally accepted method of nomenclature
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to uniquely identify compounds. Not only did compounds have irrational or historical names,
but frequently individual species had multiple names. For example, names for potassium carbonate,
K2CO3, included cineres clauellati, salt of tartar, alkali of wine lees, cendres gravellées and fixed nitre [33].
Another example of the difficulty is found in the naming of iron(II) tartrate, which in the solid state
was called extract of Mars, but in solution as tartarised tincture of Mars [33].

However, the need for, and benefit of, identifying compounds on the basis of chemical constitution
was not universally accepted. Henry Cavendish, the discoverer of dihydrogen, was not convinced that
properties were independent of the mode of preparation, and believed that forms of Hg2Cl2, known
as mercuris dulcis sublimatus and mercurius dulcis praecipitatus according to its synthesis, had different
properties. He stated in 1787 that he thought it was “very wrong to attempt to give them names
expressive of their composition” [34]. Although his perspicacity predated modern concepts such as
allotropism and polymorphism, it did not particularly assist the movement for nomenclature reform.
Nevertheless, the disquiet with the status quo was becoming general, and chemists in France and
Germany took the lead both in criticising and in proposing more logical systems. Today, we primarily
remember the contributions of de Lavoisier (in the text I will use the aristocratic form of his name
other than when citing the contemporary literature), but his system did not spring fully formed into
the world, and it would be particularly disingenuous to neglect the pioneering work of Pierre Joseph
Macquer [35–37] and Antoine Baume [38].

Macquer was very critical of the contemporary chemical nomenclature and although in his 1766
Dictionnaire de Chymie [37] he took the opportunity to make some recommendations for preferred
and better names, he did not really introduce a new system. Nevertheless, he clearly understood the
process of salt formation and proposed a nomenclature in which the parent acid was identifiable in the
name of a salt. One of the earliest more systematic approaches came from Louis Bernard Guyton de
Morveau (post-French revolution known as de Guyton), who was inspired by the work of Tobgren
Bergman, who had begun to introduce more rational names [39,40]. Bergman corresponded with the
great Swedish naturalist Carl Linnaeus, who introduced the familiar hierarchical nomenclature for
living organisms and de Morveau had a vision of applying a Linnaean binomial nomenclature to
inorganic compounds, and in Sur les Dénominations Chymiques, la nécessité d’en perfectionner le Systéme,
& les régles pour y parvenir [41] formulated five clear principles for the derivation of names:

Principle 1. That every substance should be denominated by a name, and not by a phrase;

Principle 2. That the names should be given according to the nature of the things intended to be
signified by them;

Principle 3. That when the character of the substance is not sufficiently well known to determine
the denomination, a name which has no meaning should be preferred to one which might give an
erroneous idea;

Principle 4. In the choice of new denominations, those which have their root in the most generally
known dead languages should be preferred, in order that the word may be suggested by the sense,
and the sense by the word;

Principle 5. The denominations should be arranged with care, to suit the genius of the language for
which they are proposed.

The examples that he presented correspond closely to the modern binary nomenclature of salts:
nitre alumineux (aluminium nitrate), muriate calcaire (calcium chloride), arseniate de potasse (potassium
arsenate). One wonders how well the naming of element 118, oganesson, fulfils principles four and
five [42]!

The next crucial development was the publication of Méthode de nomenclature chimique by Louis
Bernard Guyton de Morveau, Antoine-Laurent de Lavoisier, Claude Louis Berthollet, and Antoine
François Fourcroy in 1787 (Figure 4) [43,44]. This remarkable document transformed chemistry and
established the binary notation for salts with which we are familiar today. Although concerned
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nominally with nomenclature, the document can also be seen as the manifesto of the anti-phloginosist
movement and proposed a nomenclature based upon oxygène and not phlogiston [45,46]. The Méthode
identified simple substances, acids, metals, earths and alkalis. These could be combined to make
compound names. The basic grammar adopted persists in modern nomenclature. For example,
two series of acids containing nitrogen were identified (acide nitrique and acide nitreux; HNO3 and
HNO2, respectively) with the ending -ique denoting the maximum number of bonded oxygen atoms
and -eux less oxygen. These replaced the earlier names for HNO3 (acide nitreux blanc, acide nitreux dégazé,
acide nitreux déphlogistiqué) and HNO2 (acide nitreux phlogistiqué). These two acids gave rise to salts
called nitrates and nitrites, which were then incorporated into the names of salts by combining with the
appropriate base or metal as in Ca(NO3)2, Nitrate de calcaire, AgNO3, Nitrate d’argent; Pb(NO3)2, Nitrate
de plomb.
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Figure 4. The title page of Méthode de nomenclature chimique by Louis Bernard Guyton de Morveau,
Antoine-Laurent de Lavoisier, Claude Louis Berthollet, and Antoine François Fourcroy in 1787.

The authors of the Méthode anticipated that their proposals might be controversial “On conçoit
que nous n’avons pu remplir ces différens objets, sans blesser souvent les usages reçus, & sans adopter des
dénominations qui paroîtront dures & barbares dans le premier moment; mais nous avons observé que l’oreille
s’accouturnoit promptement aux mots nouveaux; sur-tout lorsqu’ils se trouvent liés à un systême général &
raisonné” (We understand that we have not been able to fill these different objectives, without often
hurting the received uses, & without adopting denominations that will appear harsh & barbaric at
first glance; but we have observed that the ear quickly gets used to new words; especially when
they are linked to a general & reasoned system)—and they were not to be disappointed in their
apprehensions! Jean Claude de la Métherie (and post-revolution also known as Delamétherie or de
Lamétherie) was very influential in France in his role as the editor of the journal Observations sur la
Physique and became the mouthpiece of the resistance to the new proposals “Elle emploie des mots durs,
barbares, qui choquent l’oreille, & ne sont nullement dans la génie de la langue Françoise, tels que carbonate,
nitrate, sulfate &c.”; It uses hard, barbaric words that shock the ear, & are by no means in the spirit of
the French language, such as carbonate, nitrate, sulphate &c.). For example, specifically concerning
nitrogen compounds, de la Métherie wrote, “Les nitrates, les nitrites sont des mots nouveaux durs; ainsi
je conserverai le mot nitre” (Nitrates, nitrites are new hard words; so I will keep the word nitre) [47].
He follows with some 55 points in which he does not accept, criticizes, modifies or rejects the new
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nomenclature system. The Méthode was first translated into English in 1788 and the anglophone
community responded similarly to the francophone; the proposals were generally rejected by the
phlogistonists and accepted by the anti-phlogistonist community [44]. The preface of Keir’s The First
Part of a Dictionary of Chemistry [48] is a diatribe against the anti-phlogistonists in general, and the
authors of the Méthode and Pierre Joseph Macquer in particular, “... their own system is only a mere
exposition of facts, they perceive no impropriety in giving the permanence of language to their ideas
by the words oxygene, hydrogene, &c. Accordingly, their nomenclature is intirely (sic) relative to
their peculiar theory”. Similar conservative views were expressed in Dickson’s An essay on chemical
nomenclature from 1796 [49]. Nevertheless, the new nomenclature was slowly, but universally, accepted
and today we never question the binary structure of compound names. One of the key developments
was the adoption and further elaboration of the proposed system by Berzelius [50].

Although these developments provide the background to the nomenclature that was to develop,
the heroes of our story, the coordination compounds played no role in the early years and the scheme
proposed in the Méthode de Nomenclature Chimique could not be used directly for such compounds.
Nevertheless, changes were also occurring in the world of coordination chemistry.

3.3. On the Cusp—Citizen Tassaert and the Beginnings of Cobalt Complex Chemistry

The next scientific description of the solution behaviour of a coordination compound came
from Tassaert in a 1798 publication (Figure 5) [51]. He gives the first description of a cobalt(III)
ammine complex and the first experimental observation that a metal ion in a coordination compound
behaves differently to the same metal ion in “simple” aqueous solution; “Another rather surprising
phenomenon is that, when cobalt nitrate is precipitated by excess ammonia, a precipitate is formed
which is immediately re-dissolved to give a brown solution; but if this solution is immediately treated
with a lot of water, a green precipitate is formed consisting only of pure cobalt oxide, which dissolves
in acids, and gives solutions of a beautiful pink color; if we leave the cobalt solution in ammonia
exposed to air for a long period, we can dilute it with as much water as we wish, without it forming a
precipitate.” In the egalitarian and revolutionary environment of France in 1798, the author is only
identified as Citizen Tassaert, although Partington [52] quite reasonably equates him with the B.M.
Tassaert, who translated Klaproth’s six volume work, Beiträge zu chemischen Kenntniss der Mineralkörper,
into French [53]. However, Tassaert made no further speculation as to the nature of the compounds he
had obtained and proposed neither composition nor structure. Nevertheless, these studies opened
the door to the investigation of solutions of metal compounds. Needless to say, in the absence of
knowledge of constitution, a meaningful nomenclature was precluded.
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A number of other early studies on cobalt coordination chemistry deserve to be mentioned at
this point. Leopold Gmelin [54] and Emil Dingler [55] reported the formation of cobalt(III) ammine
complexes (neutrales kobaltsaures Ammoniak) from the reactions of cobalt compounds with ammonia and
air in 1822 and 1829, respectively. Although Karl Georg Winkelblech disagreed with the interpretation
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of these results [56], subsequent studies by Beetz [57] and Rammelsberg [58,59] confirmed the formation
of these ammonia complexes of cobalt.

3.4. The Cult of Personality

Coordination chemistry now entered a rich phase of expansion in which large numbers of new
compounds were discovered. As analytical methods and instruments were developed, in particular
the introduction of the analytical balance, attributed to Joseph Black around 1750 [60], the constitution
of the materials, subject to the formulaic consequences of the contemporary or selected equivalent
weight could be determined. However, although new models for, and an understanding of, valence
were developing, especially for organic compounds, these did not help in understanding the nature of
the coordination compounds. Similarly, the concepts of three-dimensional structure and isomerization
were only generally accepted at the extreme end of the 19th century CE.

Against this background, a new trend emerged—that of naming the compound after its
discoverer. This nomenclature model had both advantages and disadvantages. The names Fischer’s
salt (1848, Salpetrichtsaures Kobaltoxydkali, K3[Co(NO2)6]) [61] or Erdmann’s salt (1866, Salpetrigsaures
Diamin-Kobaltoxyd mit salpetrigsaurem Kali, NH4[Co(NH3)2(NO2)4]) [62] unambiguously describe the
materials obtained from the reaction of aqueous solutions of cobalt salts with KNO2 in the absence and
presence of ammonia, respectively. Erdmann’s salt could also possess a cis- or trans-arrangement of the
ammine ligands in the [Co(NH3)2(NO2)4]3− anion, although these possibilities were not recognized at
the time. It took another 90 years before the trans- structure was crystallographically established [63].
As the names were not linked to the constitution, their usage depended upon other researchers being
aware of the name given to a particular compound. If the compound was prepared by a new route or if
the initial work was not known to a new researcher, the given name might not be used or a new name
assigned. Nevertheless, with a limited number of active researchers, the system worked reasonably well,
and a few of these names are still used. Compounds named after their discoverers include Vauquelin’s
salt (1813, [Pd(NH3)4][PdCl4]) [64], Cleve’s salt (1871, [Pt(NH3)3Cl]2[PtCl4]) [65], Peyrone’s salt (1844,
cis-[Pt(NH3)2Cl2]) [66], Zeise’s salt (sal kalico-platinicus inflammabilis, K[Pt(C2H4)Cl3]) [67–69], Gmelin’s
salt (K3[Fe(CN)6]) [70], and Reinecke’s salt (1863, [NH4][Cr(NCS)4(NH3)2]·H2O) [71]. Salts containing
the [Cr(NCS)4(NH3)2]− anion were known as reineckates, a non-recommended and unsystematic
usage that persists to this day [72]. Although the names above convey no meaningful chemical
information, the system was often modified to include some chemical or physical information about the
compounds. Information about the anion could be included in the names, for example, Gros’ nitrate
(trans-[PtCl2(NH3)4](NO3)2) [73], Gerhardt’s nitrate (trans-[Pt(OH)(NH3)4(NO3)](NO3)2) [74], Hadow’s
chloride ([PtCl(OH)(NH3)4]Cl2) [75] or Vortmann’s fusco sulfate (mixture of [(NH3)4Co(µ-O)(µ-
NH)Co(NH3)4](SO4) and [(NH3)4Co(µ-OSO3H)(µ-NH)Co(NH3)4]2(SO4)3 [76]. Additional meaningful
information such as colour or partial chemical constitution could also be included, as in Chugaev’s
red salt ([Pt(C(NHMe)2N2H2](CNMe)2]Cl2) [77], Magnus’ green salt ([Pt(NH3)4][PtCl4]) [78], Magnus’
pink salt ([Pt(NH3)4][PtCl4]) [79], Buckton’s double salt (K2[Pt(SCN)6]) [80], Thomson’s double salt [81],
Cleve’s triamine ([Pt(NH3)3Cl]Cl) [82] or Zeise’s dimer ([(C2H4)CIPt(µ-Cl)2Pt(C2H4)Cl]) [67,69].
Already the deficits of the system are apparent: Magnus’ pink and green salts appear to have the same
constitution and there is no apparent relationship between these salts and their palladium analogue,
Vauquelin’s salt. Worse was to come. Today, a synthetic chemist may prepare many hundreds or
thousands of new materials in the course of her or his career and it was not so different in the 19th century
CE. Accordingly, the literature began to describe compounds such as Reiset’s first ([Pt(NH3)4]Cl2) [83]
and second (trans-[Pt(NH3)2Cl2]) chlorides [84], Reiset’s first (cis-[Pt(NH3)4](OH)2) [84,85] and second
bases (cis-[Pt(NH3)2(OH)2]) [84,85], and Cossa’s first (K[PtCl3(NH3)]·H2O) [86,87] and second salts
K[PtCl5(NH3)]·H2O [87].

This short list of named compounds illustrates some of the fundamental problems confronting these
early chemists; Peyrone’s salt and Reiset’s second chloride (cis and trans-[Pt(NH3)2Cl2], respectively)
as well as Magnus’ green and pink salts ([Pt(NH3)4][PtCl4]) had the same composition—Cavendish’s
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caution was well justified [34]. Significant progress could not be made before the nature and structure
of coordination compounds were better understood.

3.5. When Colour Was King

At this point, it is appropriate to introduce some studies which not only provided exquisite
experimental detail and studies of cobalt(III) coordination compounds but also proposed a nomenclature
based upon their constitution. This story starts in 1847 (19 years before the birth of Alfred Werner)
with studies by Friedrich August Ludwig Karl Wilhelm Genth who at the time was assistant to Bunsen
and chemistry lecturer at the University of Marburg [88]. These studies were only published in 1851
after his move to the United States and even then, in a relatively obscure journal [89]. In contrast
to the Tassaert report of the preparation of cobalt(III) ammine species in solution, Genth follows
up the work of Gmelin, Dingler, Winkelblech, Beetz and Rammelsberg and describes the isolation
and characterization of a number of solid cobalt(III) ammine complexes and their transformation in
solution. In particular, he isolated solid, carmine red [Co(NH3)5Cl]Cl2 after neutralizing an aqueous
reaction mixture of cobalt(II) chloride or sulphate with NH4Cl and excess ammonia in the presence
of air with HCl after 4–5 weeks. He also describes the presence of orange [Co(NH3)6]3+ in solution.
He formulated the first compound as Co2O3·3NH4Cl, the deviation from the modern formula arising
from the use of equivalent weights and ultimately from Dalton’s assumption of HO as the formula of
water. The obscure nature of this publication by Genth meant that many European researchers were
unaware of his work, and independent studies on the cobalt(III) ammine complexes were reported
in 1851 by Claudet [90,91]. Claudet prepared [Co(NH3)5Cl]Cl2 in the same manner as Genth and
formulated it Co2(NH2)2·3NH4Cl, which apart from the doubling of the cobalt, corresponds to the
modern formulation. Fremy made brief reports of the same compound and other cobalt(III) complexes
in 1851 [92,93] and 1852 [94] and published a full paper in 1852 [95]. This latter publication introduces
the use of colour to name the compounds, and describes [Co(NH3)6]Cl3 as sels de lutéocobaltique and
used sels de roséocobaltique for both [Co(NH3)5Cl]2+ and [Co(NH3)5(H2O)]3+. Subsequent publications
followed from Genth and Gibbs [96–98] and from Gibbs alone [99–101] in which the colour-based
nomenclature of Frémy was adopted, anglicised and extended. The name luteocobalt was used for
[Co(NH3)6]3+ salts, roseocobalt was reserved for [Co(NH3)5(H2O)]3+ derivatives and new colour-based
names purpureocobalt and xanthocobalt were introduced for [Co(NH3)5Cl]2+ and [Co(NH3)5(NO2)]2+

salts, respectively. Gibbs and Genth made extensive descriptions of the crystal habit of the compounds
they isolated (Figure 6a). Subsequently, Jørgensen introduced the descriptions violeocobalt and
praseocobalt for derivatives of cis- and trans-[Co(NH3)4Cl2]+, respectively.

By 1857, Gibbs and Genth had adopted the suggestion of Kolbe to use a connecting circumflex as
a symbol of conjugation, giving the notation in Figure 6 for the luteo salt [98]. This representation is of
interest as it implies a difference between the conjugated ammonia molecules and the ionic chlorides.

This colour-based nomenclature can be viewed as the first systematic approach to relating
the constitution of a series of coordination compounds through their names. Logical extensions
of the nomenclature lead to constructions such as bromopurpureokobalt for [Co(NH3)5Br]2+ [102]
and nitratopurpureokobalt for [Co(NH3)5(NO2)]2+ [103] and less logically, tetraminroseokobalt for
[Co(NH3)4(H2O)2] 3+. The nomenclature was then extended from cobalt(III) complexes to other metals,
in particular rhodium and iridium, with the names implying (in modern formulation) the presence of
the following complex cations: luteo [M(NH3)6]3+, purpureo [M(NH3)5Cl]2+, violeo cis-[M(NH3)4Cl2]+,
praseo trans-[M(NH3)4Cl2]+, flavo cis-[M(NH3)4(NO2)2]+, croceo trans-[M(NH3)4(NO2)2]+, xantho
[M(NH3)5(NO2)]2+, isoxantho [M(NH3)5(ONO)]2+ and roseo [M(NH3)5(OH2)]2+. In this extension,
the descriptions are divorced from their original relationship to colour. By 1890, Sophus Mads
Jørgensen was discussing the Purpureocharakter of complexes [104] and the chemistry of Luteorhodium and
Roseorhodium [105] complexes. The latter experimental work contains oxymoronic (even transcendental)
statements such as “ein weisser, prachtig glanzender Niederschlag des Roseonitrats abscheidet” (a white,
splendidly glossy precipitate of roseonitrate separates out) [106]. Jørgensen used this nomenclature
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up to his final publication on chromium and rhodium complexes [107] and it was generally used by
coordination chemists until the proposals of Werner were broadly accepted, making alternative naming
based upon both structure and constitution more relevant. Subsequent extensions of the system
included a broadening of the ligand type to include chelating species such as ethane-1,2-diamine [108]
and 2,2′-bipyridine [109].
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Figure 6. (a) Illustration of the crystal form of the “sulphate of roseocobalt” [Co(NH3)5(H2O)]2(SO4)3 
(made available under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-
SA 4.0) license) [96]. (b) Representation of the luteo salt, [Co(NH3)6] Cl3, by Gibbs and Genth (made 
available under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) 
license) [98]. The connecting circumflex indicates the conjugation of the ammonia molecules to the 
doubled cobalt atom. 
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Figure 6. (a) Illustration of the crystal form of the “sulphate of roseocobalt” [Co(NH3)5(H2O)]2(SO4)3

(made available under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA
4.0) license) [96]. (b) Representation of the luteo salt, [Co(NH3)6] Cl3, by Gibbs and Genth (made
available under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)
license) [98]. The connecting circumflex indicates the conjugation of the ammonia molecules to the
doubled cobalt atom.

Carl Weltzien published three papers attempting to rationalize the constitution of these cobalt
complexes into the prevalent “ammonium theory” [110–112]. Although these papers are models of
logical analysis, they clearly identify the problem of formulating these compounds in a meaningful
manner before the Werner model. An example of the complexity of notation is seen in Figure 7,
which presents the proposed “structure” of the sulfate salt of the luteo complex [Co(NH3)6]3+ [110].
In a strange twist of fate, Werner reanimated the ammonium model in a paper from 1903 entitled
Die Ammoniumsalze als einfachste Metallammoniake (The ammonium salts as the simplest metal-ammine
complexes) [113].
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Werner formulations beyond the overall stoichiometry (corrected for the doubled cobalt atom).

To summarize, the colour-based nomenclature made an excellent relationship between constitution
and the name, but in the absence of structural knowledge proved deficient. According to Chemical
Abstracts SciFinder, the usage had almost died out by the latter half of the 20th century CE, with the
last references to violeo- [114], luteo- [115], praseo [116] and roseo- [117] compounds appearing to be
between 1951 and 1966. The most recent use of this nomenclature appears to date from 2017, when a
single publication used the description purpureo to describe [Co(NH3)5Cl]Cl2 [118].

3.6. The Problem of Proportional/Equivalent Weights

We have referred on a number of occasions to the problems of atomic and equivalent weights.
This was a genuine problem for scientists in the 19th century and presents an ongoing problem to those
who read the literature from that period. It is appropriate to summarize the situation at this point in
the text. A remarkably good summary is given by William Odling in his 1855 translation of the book
Notation, Classification and Nomenclature by Auguste Laurent [119]. Odling identifies four different
systems used by Laurent in his text. The first is the system that was commonly used in the United
Kingdom in the 1850s, with formulae of HCl, HO, NaCl and AgO for hydrochloric acid, water, sodium
chloride and silver(I) oxide, respectively. The second is the Berzelius system with the corresponding
formulae H2Cl2, H2O, NaCl2 and AgO. The third is the so-called four-volume system from Gerhardt,
which yields formulae of H2Cl2, H2O, Na2Cl2 and Ag2O. The final method was the two-volume system
from Gerhardt which gave formulae HCl, H2O, NaCl and Ag2O and which Laurent selected as his
favoured form and correspond to modern usage. The equivalent weights are in the ratio for H–Cl–O of
1:35.5:8 for the first system and 1:35.5:16 for the other three. Berzelius introduced a strike-through for
elements using the first model, resulting in the notation H, Cl and N.

4. The Troubled Transition into the Modern Era

4.1. Valence—A Surprisingly Complex Concept

A concept lying at the core of the transformation of chemistry in the second half of the 19th
Century CE is that of valence [120,121]. We will use the term valence rather than valency other than
in quotations from the original literature; this corresponds to IUPAC usage, although as an aside,
the IUPAC definition, “The maximum number of univalent atoms (originally hydrogen or chlorine
atoms) that may combine with an atom of the element under consideration, or with a fragment, or for
which an atom of this element can be substituted” [122], clearly assigns a valence of five to the carbon
in methanium CH5

+. It is interesting to note that IUPAC itself is not completely satisfied with this
definition and has initiated a project in which the “objective is to find out whether a comprehensive
definition of valence can be formulated” [123]. The rationalization and genesis of the stereoelectronic
model of organic chemistry stems from the early theories of valence, types and radicals, with the
earliest and most cogent proponent being August Kekulé [124]. Despite the importance of valence as a
concept for the development of organic chemistry and as the crucial driver for the development of the
modern picture of coordination chemistry proposed by Werner, it is a remarkably diffuse concept [125].
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As Ramsberg comments, “The success of structure theory .... relied on the principle of valence, which
raised the inevitable question about what it actually was. Strictly speaking, valence ... was a number
that possessed no physical significance” [120]. This is no post-modern interpretation, but a real
statement of a frustration that was well-recognized by contemporary authors. In 1876, Victor Meyer
wrote, “Allein diese Arbeitsfülle und die grosse Zahl der gewonnenen Vortheile haben niemals das
Bewusststein unterdrücken können, dass wir über das eigentliche Grundprincip unserer heutigen
Anschauungen, über die Nature dessen, was wir eine Valenz oder Verwandtschaftseinheit nennen,
vorläufig noch vollkommen im Unklaren sind” (The sheer volume of work and the large number of
advantages gained have never been able to suppress the awareness that we are currently completely
unclear about the basic principle of our current views and the nature of what we call valence or
affinity) [126]. How did this unsatisfactory state of affairs arise?

The origin of the concept of valence lies with the father of organometallic chemistry, Edward Frankland,
who, in 1852, observed, “When the formulae of inorganic chemical compounds are considered, even a
superficial observer is struck with the general symmetry of their construction ... it is sufficiently evident
... no matter what the character of the uniting atoms may be, the combining power of the attracting
element, if I may be allowed the term, is always satisfied by the same number of these atoms” [127].
Frankland’s combining power is the first modern formulation of the concept of valence. Over the next
few years, “combining power” was described using the terms Sättigungskapazität (saturation capacity),
Atomigkeit (atomicity), Werthigkeit (value) and finally Valenz (valence). This ultimate formulation was
proposed by Carl Wichelhaus [128] (Gebraucht man „Valenz” als kürzeres Wort an Stelle des von A. W.
Hofmann eingeführten „Quantivalenz” in demselben Sinne, so ist es zunächst klar, dafs zur Bestim mung der
relativen Gröfse dieser „atomfesselnden Kraft” nur diejenigen Verbindungen dienen können, welche ein Molecul
repräsentiren: If one uses “valence” as a shorter word in place of the “quantivalence” introduced by A.W.
Hofmann in the same sense, it is initially clear that only those compounds which represent a molecule
can serve to determine the relative magnitude of this “atomic bounding force“. This contraction of
Hofmann’s Quantivalenz [129] was generally accepted after its adoption by Kekulé [124].

In the next section, we will see that as a concept, valence served organic chemistry well, but
performed a disservice to the inorganic discipline. In his original publication from 1852, Frankland
identified that a given element could have multiple valences [127], specifically discussing a group
of 15 elements in terms of those with a combining power (valence) of three, such as NH3, PH3 and
PCl3 and a combining power of five, such as NH4I and PH4I. It is unfortunate that he did not directly
compare PCl3 and PCl5, both of which had been prepared very early in the 19th century CE [130,131].
By 1858, Kekulé was proposing a fixed valence for elements; although he was aware of the prior
work of Frankland, he did not equate the combining power (and by inference the variable combining
power) with valence [132]. Kekulé was remarkably successful in rationalizing the structures of organic
compounds in terms of a fixed valence of four for carbon, and extended the fixed valence idea to
elements such as nitrogen and oxygen with fixed valences of three and two, respectively. The fixed
valence of four for carbon necessitated multiple bonds (or free valences). In his early work, Kekulé
seems to ignore the problem of carbon monoxide—if carbon and oxygen have valences of four and
two, respectively, this compound should not exist.

Inorganic compounds presented Kekulé some challenges and he introduced the concept of molecular
compounds to address the problem of variable valence: “A côté de ces combinaisons atomiques nous
devons distinguer une seconde catégorie de combinaisons, que je désignerai par le nom combinaisons
moléculaires” (In addition to these atomic combinations we must distinguish a second category of
combinations, which I will refer to as molecular combinations) [133]. Taking PCl5 as an example,
Kekulé formulated this as PCl3, Cl2 which rapidly evolved into the modern type of formulation
PCl3·Cl2 and is the origin of the dot notation that is still encountered, especially in the non-chemical
literature, for ammines and hydrates such as CrCl3·6NH3 or CrCl3·6H2O.

In modern notation, it is clear that the term valence was used with variable meanings in the latter
half of the 19th Century CE, sometimes in the sense of the oxidation state and sometimes in the sense
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of the number of bonded atoms, and the concept of variable valence was not universally accepted.
The frustration of the chemical community is well expressed by Madan in 1869, “It is very much to
be regretted that the subject of chemical nomenclature is in such an unsettled state. It seems a real
reproach to chemists that scarcely two text-books can be found in which the same system of names is
adopted, and that there is hardly a single number of a scientific periodical which does not contain
specimens of totally different systems” [134]. This latter document is worth reading, if only to discover
the merits and demerits of replacing the name sulfuric acid with brimstonic acid.

A remarkable overview of the state of chemical understanding and nomenclature at the beginning
of the last half of the 19th century CE is provided by Williamson [135], in which the -ic and -ous
endings for higher and lower oxidation states of transition metal compounds is clearly enunciated
(SnO, stannous oxide; Fe2O3, ferric oxide), names which were still in use when I began my chemical
education! This document also formulates some of the issues confronting contemporary chemists in
the 1860s: the names nitric and nitrous acid denoted N2O5 and N2O3, respectively, which generated
HNO3 and HNO2 (hydric nitrate and hydric nitrite) by the addition of water (or hydric oxide).
This latter usage predates by some 150 years the recommendation of the use of the term hydron by
IUPAC [136,137]. A final example concerning a transition metal compound from Williamson shows
the danger of using nomenclature formalism reductio ad absurdum, “A neutral oxide, like the body
MnO2, now called peroxide of manganese, ought perhaps, in anticipation of its being some day
related to salt-like derivatives, to be called permanganic acid.” In modern usage MnO2 is not a peroxide
(dioxide(2–)) and the term permanganic acid would generally be taken to mean HMnO4 (not H2MnO3).

4.2. Variable Valence and the Werner—Jørgensen Controversy

The debate between Werner and Jørgensen is well-documented and will not be rehearsed in detail
here [138–141]. Nevertheless, it is so important to our modern understanding of the structure and
bonding in coordination compounds, that the origins and highlights will be presented. Our interest lies
in how the ultimately successful views of Werner prevailed and defined the approach to nomenclature
of coordination compounds that persists to this day. It is informative to look at the origins of the
Jørgensen model to understand how the concepts of valence, which were so successful in providing
a rationalization of organic chemistry, proved to be a hurdle to the understanding of coordination
chemistry. The Jørgensen model encompassed the empirical nomenclature described in Section 3.5
above, but this was not extended to a more systematic structure-based approach.

The debate should not be dismissed in terms of a successful versus an unsuccessful model, as the
Werner model was based upon the painstaking and accurate experimental work of Jørgensen and
others, and the refinement of Werner’s ultimately accepted model was on the basis of its sequential
modification in light of the detailed criticisms from Jørgensen. Although early accounts portray
Jørgensen gracefully conceding defeat to his rival [139–141], revisionist analysis suggests that he was a
recidivist who never really abandoned his own theory [138].

It all began in 1839, when Charles Gerhardt introduced into organic chemistry the term copule
to describe radicals (in the contemporary not the modern sense) which could be linked in pairs [142].
He used this originally for describing salts of organic acids, but the usage was extended by Jakob
Berzelius to cover a more general linkage in a pairwise manner or into chains of copulated compounds
(Paarlinge oder gepaarte Verbindungen) [143].

This model worked exceptionally well in organic chemistry where chains of carbon atoms allowed
the rationalization of many structures and structural types. However, the extension of the general
proposals of Berzelius to the rest of the periodic table was criticized heavily at the time [144]. Berzelius
extended the copulation model to metal complexes in his annual reviews of progress in science,
for example, denoting [Ni(NH3)6]Cl2 as NiCl + 3NH3 in which the strike-through, in this case, denotes
that the ammonia is copulated in a chain [145].

In his monograph Die chemie derjetztzeit vom standpunkte der electrochemischen auffassung.
Aus Berzellius lehre entwickelt, Blomstrand developed and clarified the Berzelius model and introduced
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a new notation for the copulated ammonia molecules and also shows how other complexes such as
K4[Fe(CN)6] can be represented (Figure 8) [146]. These representations have a number of interesting
points. Firstly, the chlorides are associated at the end of the copulated ammonia ligands in [Co(NH3)6]Cl2
and the representation implies a valence of two for the cobalt and two equivalent chains each containing
three ammonia molecules and one chloride. Similarly, in K4[Fe(CN)6] the iron has a valence of two
and each chain of three copulated cyanides has two potassium ions associated. Figure 9 shows the
representations of the cobalt(III) complexes that we have discussed in the previous sections and
illustrates a number of interesting features of the chain theory. The raised Roman numerals are
not modern oxidation numbers, but rather an indication of the valence (in this case in the sense of
the coordination number). If we take [Co(NH3)5Cl]Cl2 (purpureo) as an example, the double atom
notation Co gives a modern formulation of Co2(NH3)10Cl6 which possesses the correct stoichiometry.
The double atoms were considered to be able to bind 6 other atoms, giving a valency for the doubled
cobalt of six, meaning that two chlorines are directly attached and two types of copulated chains,
one with two ammonia and one with three, are present, each terminating in a chloride. The luteo
compound also contains a double atom, but has the correct modern stoichiometry, but now three
types of copulated chains, with one, two and three ammonia molecules, respectively. It is unclear how
Blomstrand arrived at the particular chain lengths for his copulated ammonia molecules.
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Jørgensen originally formulated the luteo compounds in the same way as Blomstrand, with doubled
atoms and three different chain lengths for the copulated ammonia molecules (Figure 10a) [147].
However, by 1890 he had made two important changes. Firstly, the doubled atoms were replaced by a
single cobalt and, secondly, the distribution of the ammonia in the conjugated chains was changed
to favour those with four ammonia molecules [148]. We note, in passing, that this formulation
implies five different types of ammonia molecule and two different types of chlorine in [Co(NH3)6]Cl3.
The identification of the conjugated chain of four ammonia molecules was on the basis of systematic
observations of complexes in which ammonia ligands had been replaced by ethane-1,2-diamine and
became a common structural feature of the Jørgensen model.

The origin of the modern description of coordination compounds as complexes also lies in this
period. Werner used the term in his first publication on coordination compounds: “Am den eben
besprochenen Verbindungen, also denjenigen, in jenen gleichsain ein Komplex MA6, enthalten ist, wobei A
sowohl Ammoniak als auch Wasser oder ein anderes Molekül sein kann ...” (On the compounds discussed
above, i.e., those in which a complex MA6 is present, where A can be ammonia as well as water or
another molecule ....) [149]. Jørgensen only seems to have adopted the description Komplex from 1894
onwards [150,151].
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Figure 10. (a) Jørgensen’s early description of the luteo salts (R2 = doubled cobalt, chromium or rhodium)
with different lengths of copulated ammonia molecules (Copyright Wiley. Used with permission) [147];
(b) The revised formulation from 1890 with a single cobalt atom and a preferred chain length of four
ammonia molecules (a = NH3) (Copyright Wiley. Used with permission) [148].

The Blomstrand–Jørgensen model was based on a vast body of experimental work and precise
observations. The proposals were internally self-consistent and accounted for the experimental facts
reasonably well. With the benefit of hindsight, there are three aspects that the model did not successfully
address. The first is that the nature of the interactions between the ammonia or other molecules or
atoms in the conjugated chain were unknown and undefined. This limited application of the model to
new systems as it was not clear what molecules would come into questions as ligands. The second
equally fundamental problem relates to the meaning of valence and the confusion between what we
today call the oxidation state and the coordination number. Finally, the chain model did not address
the spatial arrangement of the ligands about the metal. Although it would have been possible to
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introduce a “modern” type of nomenclature for the structures generated by the chain model, this does
not appear to have been done.

4.3. Werner—Not Just One, But Now Primary and Secondary Valence

In 1893, Alfred Werner proposed a new model for coordination compounds in his publication
“Beitrag zur Konstution anorganische Verbindungen” (Contribution to the constitution of inorganic
compounds) in which all of the key elements of modern coordination chemistry are to be found [149].
Although his training and early studies were in the field of organic chemistry, he brought his knowledge
of the emerging understanding of molecular structure and valence to inorganic chemistry. His earliest
work with Arthut Hantzsch concerned the stereochemistry of nitrogen compounds [152–154] and his
ability to think about the three-dimensional arrangement of atoms in space was critical to his subsequent
contributions to inorganic chemistry. His understanding of the three-dimensional structures of organic
species is summarized in an early publication from 1891 [155].

The transition from the stereochemistry of nitrogen to coordination compounds with ammonia
bound to metal centres was perhaps a natural one. Although he was a talented and prolific
experimentalist, he initially approached this by surveying the literature of coordination compounds,
dominated in the latter quarter of the 19th century CE by the work of Jørgensen. He analysed the
problems associated with the lack of clarity regarding valence and the need to have absurdly high and
variable valencies according to the Blomstrand–Jørgensen model. His genius was to identify two types
of valence. The first he identified as the primary or ionizable valence (Hauptvalenz) and the second as
a secondary or non-ionizable valence (Nebenvalenz). In modern terms, Hauptvalenz and Nebenvalenz
are equivalent to oxidation state and coordination number. This brought to an end the confusion
between valence and stoichiometry that had bedevilled the development of the understanding of
these compounds.

Werner then postulated that each element had preferred Hauptvalenz and Nebenvalenz values,
leading to the concept of fixed coordination numbers for elements in given oxidation states.
As a concrete example, we can take the luteo complex [Co(NH3)6]Cl3 and assign a Nebenvalenz
(coordination number) of six and an Hauptvalenz (oxidation state) of three. In this first publication,
he identified Nebenvalenz values of 6, 4 and 2 in the compounds [Co(NH3)6]Cl3 (Luteokobaltchlorid),
[Cu(NH3)4](NO3)2 (Kupferammoniaknitrat) and H2NHgCl, respectively. The replacement of ammonia
by other ligands is explicitly identified in compounds such as [Cr(NH3)5(H2O)]Cl3 and specifically
identifies the presence of six, five and four coordinated ammonia ligands in a six-coordinate species
in the luteo, purpureo and praseo complexes. In this first publication, he enclosed coordination
entities in normal brackets, clearly identifying the coordinated ligands (Figure 11), although by his
next publication he had started to use the square brackets that survive to this day [156].

Chemistry 2019, 1, x 17 

 

identifies the presence of six, five and four coordinated ammonia ligands in a six-coordinate species 
in the luteo, purpureo and praseo complexes. In this first publication, he enclosed coordination 
entities in normal brackets, clearly identifying the coordinated ligands (Figure 11), although by his 
next publication he had started to use the square brackets that survive to this day [156].  

 
(a) 

 
(b) 

Figure 11. (a) Werner initially used normal (curved) brackets to denote the coordination entity and 
stacking the ligands in a manner reminiscent of Jørgensen (Copyright Wiley. Used with permission) 
[149]. (b) By his second publication on coordination chemistry, Werner had started using, albeit 
inconsistently, the square brackets to denote the coordination entity [156]. 

4.4. Werner on Nomenclature 

Werner not only introduced a new model for describing the bonding and structure of 
coordination compounds, but also proposed a new scheme for their nomenclature and formulation 
which substantially persists to this day, and is the core of the IUPAC system for the nomenclature of 
these species. In 1897, Werner published his fifth article in the series concerning coordination 
compounds on the topic of their nomenclature “Beitrag zur Konstitution anorganischer Verbindungen. 
V. Mitteilung. Die Kobaltammoniakverbindungen und ihre Nomenklatur” (Contribution to the constitution 
of inorganic compounds. V. Communication. Cobalt–ammonia compounds and their nomenclature) 
[157]. The fully refined and mature version of his nomenclature is best found in his book “Neuere 
Anschauungen auf dem Gebiete der anorganischen Chemie” (New Ideas on Inorganic Chemistry) [158,159] 
and it is instructive to quote his rules for coordination compounds in full [159]: 

1. Names obtained from the colour of the compounds are to be avoided. 
2. The name of the resulting complex is to be made up by placing side by side the names of the components. 
3. The names of the atoms (or radicles) which are linked to the central metallic atom are to be placed before 

the name of this central atom. When carrying this out the following order is to be preserved: The names of 
the acid residues come first, then follow the names of the groups which resemble ammonia, and directly 
before the name of the metallic atom are to be placed the number of ammonia molecules. 

4. The molecule of ammonia is to be expressed by the word ammine (spelt with a double m), in order to 
distinguish it from the organic amine. Water, after Palmaer’s suggestion is expressed by aquo. 

5. The names of the acid residues which are not in the first binding zone are placed after the name of the 
central metallic atom. 

This is an additive nomenclature system in which ligands are given in the sequence anions (acid 
residues) before neutral ligands. Non-coordinated anions are placed after the metal name. The 
English translation [159] retained the German name construction, concatenating the cation and the 
anion, as in hexamminchrominitrate for [Cr(NH3)6](NO3)3 and diaquotetrammincobaltichloride for 
[Co(H2O)2(NH3)4]Cl3. For compounds with different coordinated ligands, stacked formulae (Figure 
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the ligands in a manner reminiscent of Jørgensen (Copyright Wiley. Used with permission) [149].

4.4. Werner on Nomenclature

Werner not only introduced a new model for describing the bonding and structure of coordination
compounds, but also proposed a new scheme for their nomenclature and formulation which
substantially persists to this day, and is the core of the IUPAC system for the nomenclature of these
species. In 1897, Werner published his fifth article in the series concerning coordination compounds
on the topic of their nomenclature “Beitrag zur Konstitution anorganischer Verbindungen. V. Mitteilung.
Die Kobaltammoniakverbindungen und ihre Nomenklatur” (Contribution to the constitution of inorganic
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compounds. V. Communication. Cobalt–ammonia compounds and their nomenclature) [157]. The fully
refined and mature version of his nomenclature is best found in his book “Neuere Anschauungen auf dem
Gebiete der anorganischen Chemie” (New Ideas on Inorganic Chemistry) [158,159] and it is instructive to
quote his rules for coordination compounds in full [159]:

1. Names obtained from the colour of the compounds are to be avoided.
2. The name of the resulting complex is to be made up by placing side by side the names of the components.
3. The names of the atoms (or radicles) which are linked to the central metallic atom are to be placed before the

name of this central atom. When carrying this out the following order is to be preserved: The names of the
acid residues come first, then follow the names of the groups which resemble ammonia, and directly before
the name of the metallic atom are to be placed the number of ammonia molecules.

4. The molecule of ammonia is to be expressed by the word ammine (spelt with a double m), in order to
distinguish it from the organic amine. Water, after Palmaer’s suggestion is expressed by aquo.

5. The names of the acid residues which are not in the first binding zone are placed after the name of the
central metallic atom.

This is an additive nomenclature system in which ligands are given in the sequence anions
(acid residues) before neutral ligands. Non-coordinated anions are placed after the metal name.
The English translation [159] retained the German name construction, concatenating the cation and the
anion, as in hexamminchrominitrate for [Cr(NH3)6](NO3)3 and diaquotetrammincobaltichloride for
[Co(H2O)2(NH3)4]Cl3. For compounds with different coordinated ligands, stacked formulae or linear
representations ([(HO)2Pt(NH3)4]Cl2) were used. Werner indicated the oxidation state by changing the
ending of the metal component, a strategy that works in a satisfactory manner in German, where the
anion is appended after the metal name, but not so well in English, where the tendency is to separate
cation and anion. He proposed the modification of the element name with the following suffixes for
oxidation states up to +8:

a- (+1) o- (+2) i- (+3) e- (+4)
an- (+5) on- (+6) in- (+7) en- (+8)

Thus, the oxidation state of +4 for the platinum in [(HO)2Pt(NH3)4]Cl2 would lead to the name
dihydroxotetrammineplatechloride. This aspect of the system was not to be sustained, but arguably
persisted in names such as ferricyanide and ferrocyanide.

5. Regulation and Regulations

The basic principle which Werner adopted for naming coordination compounds is additive
nomenclature, in which ligands are added as prefixes to the name of central (metal) atoms.
This persists as the overriding principle in all subsequent refinements of nomenclature for coordination
compounds. Excellent overviews of early developments have been given by Fernelius [160] and
Bailar [161]. The following sections concentrate upon coordination compounds rather than general
inorganic nomenclature.

Coming up to date, and with apologies to my good friends in IUPAC Division VIII, regulation can
be seen as an ongoing and dynamic compromise between what is needed, what is wanted and what
will be accepted! An example from terminology demonstrates this; in 1970 IUPAC termed chelating
ligands with two donor atoms bidentate [162] but by 1990 this recommendation had been revised to
didentate [163]. The change was proposed not on the basis of need or demand, but rather from the valid
reason of seeking a single consistent set of numerical prefixes (mono, di, tri, etc.). The construction
didentate opposes an earlier stated principle of not mixing Greek prefixes (di-) with words of Latin
origin (dente, tooth) (although philological pedants could justify didentate on the basis of the Greek
word δóντι, dónti meaning tooth) [162]. However, the majority of the chemical community were
neither etymological experts, nor prepared to change a term they used and loved to one which was alien.
Although this has many of the hallmarks of the arguments Jean Claude de la Métherie used against
the de Lavoisier Méthode, the scientific opinion was clear; in the period 1990–2005, SciFinder topic
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searching gives 121 examples for the term didentate and 16,784 for the term bidentate (SciFinder, 22 July
2019). In 2005, IUPAC reverted to recommending bidentate because it “reflects common usage” [164].
Less controversial was the 2005 proposal that when anions with names ending in -ide are present in
coordination entities, they should be denoted uniformly, and “without exception”, by names ending
-ido [164]. This affected long established usages such as chloro, fluoro, hydroxo and cyano; there was no
rush of chemists to the nomenclature barricades, burning effigies of the IUPAC directorate, but rather a
quiet acceptance that the changes were logical and could be lived with. Despite this, SciFinder topic
searching only shows ten examples of the use of tetrachloridoplatinate since 2005, compared to 4595
citations using tetrachloroplatinate (SciFinder, 22 July 2019), so “living with” appears to equate with
“ignoring”. As an aside, one of the notable changes in chemical publishing is the loss of nomenclature
by the journals. Until the mid 1990s, many journal editors very strictly corrected nomenclature to
IUPAC recommended usage, a practice that has since fallen into disuse.

5.1. Karlsruhe and the First Communion of Chemists

Probably the first time that the international chemical community came together in a concerted
effort to solve common problems was at the Karlsruhe Congress of 1860 [165–167]. Even the formula of a
compound as simple as water was controversial [168]. William Higgins [169,170], John Dalton [171,172]
and Grotthuss [173] all assumed the formula HO, although the latter subsequently revised this to
HO2 [174]. Incidentally, Dalton also proposed the formulae HO2, HO3 and HO4 for HF, HCl and
Cl2, respectively [169,170]. By the 1860s, the standard text books had differing formulations for
water; in 1861 Kekulé was using HO [175–177] whilst by 1864 Lothar Meyer [178] had settled on H2O.
At the Karlsruhe meeting, Stanislao Cannizzaro called attention to the significance of the Avogadro
hypothesis and clarified the differences between atomic weight, equivalent weight and molecular
weight. Although the meeting did not explicitly discuss nomenclature, the acceptance and recognition
of the Avogadro hypothesis lead directly to progress in periodicity, the periodic table and eventually to
understanding the two- and three-dimensional structures of molecules.

5.2. Paris and Geneva—Rules for Organic Chemistry

Organic chemistry made enormous progress in the latter half of the 19th Century CE and the
chemical community was beginning to suffer from an information overload. The first edition of
Beilstein Handbook of Organic Chemistry published from 1883 onwards contained some 15,000
organic compounds [179,180]. By 1900, the number of known organic compounds was estimated to be
100,000. It was becoming barely, if at all, possible to read and follow all of the literature. Numerous
new compounds and derivatives were being reported each month and the variety of names used,
although often internally consistent within a research school or community, were not universally
transferable or recognizable. The International Congress of Chemists met in Paris in July 1889 and
in his opening remarks, Bertholet stated “...practical questions, such as ... nomenclature. The last
urgently needs revision and improvement. The system hitherto followed has become insufficient.
... A new and clearer system is absolutely necessary, with lines broad enough to last for some time
at least” [181]. The International Congress established an international commission to consider new
nomenclature systems. This commission had 25 members responsible to a sub-committee of seven in
Paris. This sub-committee met 45 times in the next two years to discuss the reports on the reform of
organic chemistry nomenclature from the 25 experts. A report was presented to the Geneva meeting
of the Congress in 1892 and, if nothing else, highlighted the differences among the various national
approaches to nomenclature [182]. Perhaps the most important decision of the Geneva meeting was to
establish a system of official names; “In addition to the usual name, every organic compound should
be given an official name under which it may be found in indexes and dictionaries”. This was an early
recognition that nomenclature might have two different roles–those of communication and archiving.
The Congress and the report only concerned itself with the nomenclature of organic compounds.
An excellent account of the Congress is to be found in Crosland [33].
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With the nomenclature of organic compounds off to a good start, we will now concentrate
upon the development of nomenclature for inorganic materials, with the emphasis upon
coordination compounds.

5.3. Neologisms and New Terminology

At this point it is appropriate to make a slight deviation into two aspects of terminology which
emerged in the early part of the 20th century CE. We have used the term ligand throughout this
text, but this was a word and concept that was unknown to Werner and Jørgensen [183]. The word
ligand was first used by Alfred Stock in 1917 to describe the groups bonded to silicon (or carbon)
and had its roots in the discussions and lack of clarity regarding the precise meaning of valence [184].
“Ligand” was used in this sense intermittently in the following years but was not widely embraced by
the chemical community. An early use of the word ligand in coordination chemistry in its modern
sense seems to date to 1926, when Klement published a paper entitled Phosphorsäure als Ligand in
komplexen Kobaltverbindungen (Phosphoric acid as a ligand in cobalt complexes) [185] in 1926 and by 1935
Jensen [186] had introduced the term to the broader European community. By 1939, Tutida (Tsuchida)
and Tamaki were using it routinely in discussions of coordination compounds [187–192]. The term
was slowly adopted by the community and was “formalized” by IUPAC in the formulation [193] of
the tentative [194,195] and definitive [196] 1957 IUPAC recommendations for the nomenclature of
inorganic chemistry. A complete discussion of the etymological and scientific history of the word
ligand is given in Reference [183].

The second word introduced into coordination chemistry early in the 20th century CE, and one
which is so engrained in our modern understanding that we tend to imagine that it has always been
there, is chelate (or chelation) [197]. However, this is another word that was unknown to Werner and
his contemporaries even though they worked with bidentate ligands such as ethane-1,2-diamine.
Multidentate ligands have played a crucial role in the development of coordination chemistry, but it
was only in 1920 that the word chelate was first introduced. In a paper on pentane-1,3-dionate
complexes, Morgan and Drew [198] used the word chelate to describe a ligand which bound to a
metal ion through two different atoms. The new word was introduced thus, “The adjective ‘chelate,’
derived from the great claw or ‘chela’ (‘chely’) of the lobster and other crustaceans, is suggested for
these caliper-like groups which function as two associating units and fasten on to the central metallic
atom so as to produce heterocyclic rings.” The concept of chelation was not accepted uncritically
by the chemical community. Although Lowry made early reference to the term chelate in a 1923
article entitled “Stability of co-ordination compounds” [199], he also introduced the terms cyclic and
centric co-ordination to distinguish between conjugated and non-conjugated chelate rings. This was
robustly dismissed in a polemical article by Smith later in the same year, who also commented on the
special stability of the five-membered chelate ring [200]; Lowry responded to the criticism in an article
debating the precise “crabbiness” with which the term chelate should be used [201].

5.4. Preliminary Activities on Inorganic Nomenclature

The need for a more systematic approach to the nomenclature of inorganic compounds was
recognized early in the 20th century CE, being initially identified in the main group community
where ever more oxyacids and their salts were being isolated and characterized. Responding to 1910
proposals for the nomenclature of acid phosphates by McKenney [202], Ransom made the following
plea, “Has not the time come for scientific men to be exact and scientific in the matter of chemical
nomenclature, and to demand of manufacturers the use of names which shall indicate the composition
of the material designated?” [203].

The modern story begins in 1911, with the establishment of the International Association of
Chemical Societies (Association Internationale des Sociétés Chimiques, IACS), which met in Paris and
identified the need for a rationalization of the nomenclature of inorganic and organic chemistry and
established three committees for inorganic nomenclature, organic nomenclature and unification of the
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methods of notation of physical constants [204,205]. The first reports of the committees were planned
for the meeting in Berlin in 1912 [206]. External events intervened and the work of IACS, especially
international collaboration, was essentially brought to an end with the outbreak of the first world war
in 1914. The IACS became one of the casualties of the global conflict and the association was dissolved
in 1919.

The International Union of Pure and Applied Chemistry (IUPAC) was established in 1919 as
an organization with a remit including nomenclature, but broader than IACS [207]. The original
membership of IUPAC excluded the nations of the Central Powers (Germany, Austria-Hungary,
Ottoman Empire and Bulgaria), following decisions of the Interallied Scientific Academies in 1918 [208].

An interesting overview of the state of chemistry just after the establishment of IUPAC is found in
James Walker’s presidential address to the Chemical Society in 1923, where he discussed the evolution
of symbols and formulae in chemistry and highlighted just how fragmented and fragmentary the
understanding of bonding, molecular structure and valence was less than 100 years ago [209].

The nomenclature proposals for coordination compounds from Werner were widely accepted,
although he had concerned himself more with complex cations than anions. By 1923 the Nomenclature
Committees of both the British and the American Chemical Societies [210] had taken up the nomenclature
challenge and recommended that compounds such as [PtCl4]2− and [PtCl6]2− should be named as
coordination entities (ligand first, metal last, suffix indicating charge and oxidation state) with the
names chloroplatinite and chloroplatinate, respectively, “Salts of chloroplatinic acid are chloroplatinates
(not platinichlorides). Similarly salts of chloroauric acid are to be called chloroaurates”. Although
this differs from modern practice in a number of details (no oxidation number, -ite or -ate ending to
indicate oxidation state, no indication of the number of chloride ligands) the trend was towards a
common system for coordination entities regardless of charge. We note in passing that the -ite and -ate
system of naming anions and the parent -ous or -ic endings for cations works well if only two oxidation
states are commonly encountered, but suffer from the disadvantage even in these cases, that the
oxidation state and coordination number are not given. Thus, the name chloroplatinite only leads to
the correct formulation if one knows the oxidation state and coordination number; with knowledge of
only oxidation state, [PtCl3]− or [PtCl4]2− would be equally acceptable.

The activities of the US and UK national chemical societies were linked to the decision of
the newly formed IUPAC in 1921 to establish a commission for inorganic nomenclature [211].
The first reports on inorganic nomenclature came in fragmentary form from 1926 onwards from
Marcel Delépine, but these had little to say regarding coordination compounds [212]. The fullest
version of the report seems to have been published in 1929 [213], which includes the international
responses to the consultation document. To extract some of the more important points, there
is a suggestion to use oxidation numbers (Stock numbers in the nomenclature of the time) to
indicate oxidation state, in the form “iron II” or “iron III”. This was in direct response to the
difficulties of using the Werner modifications to the metal root to indicate oxidation state in languages
other than German. Where specifics of coordination chemistry are mentioned, the report goes
against some of the proposals of Werner and the 1923 recommendations from the chemical societies.
Although examples of constructed names are given in French, the recommendation is to place the
metal as the first part of the constructed name for both anions and cations. More confusingly,
the recommendation included changing the name of the ligand, depending on the overall charge
of the complex, as seen in the example given of [Co(NH3)2(NO2)4][Co(NH3)4(NO2)2] which is
named cobalti-diammonio-tétra-nitrite-cobalti-dinitro-tétrammonique and conforming to the French
convention of naming the anion before the cation. Note the different nomenclature of the NH3

ligands; ammonio in the anion and ammonique in the cation. A specific recommendation for the
incorporation of oxidation (Stock) numbers into English names is found for K[Cr(NH3)2(NO2)4] which
is named potassium chromium-III-diammonio-tetranitrite. Germany was excluded from IUPAC
membership until 1929 and the German Chemical Society established a parallel commission on
inorganic nomenclature that made an intermediate report recommending the use of oxidation (Stock)
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numbers rather than the Werner system to indicate oxidation state [214]. The kerning in the German
article is rather unclear but the preferred form seems to be Osmium(VIII)oxyd. There was nothing
more regarding coordination compounds, “Die Kommission hat sich bisher erst mit einigen Fragen von
allgemeiner Bedeutung beschaftigt ohne das gesamte Gebiet erschopfend zu behandeln” (The Commission has
so far only dealt with a few issues of general importance without exhaustively covering the whole
area). After a subsequent intermediate report [215], the final recommendations only appeared in 1937
in French [216] and English [217] but not German.

An excellent perspective of the convoluted history of nomenclature between 1925 and the 1940
rules has recently been published by Leigh [218].

5.5. Rules for Naming Inorganic Compounds 1940

The first official recommendations for nomenclature of inorganic compounds from the International
Union of Chemistry (see Reference [204] for a discussion of the name changes that IUPAC and allied
organizations experienced in the 20th century CE) saw the light of day as the world was descending
once again into chaos. It is a remarkable tribute to the commitment of the international scientific
community involved in this work, that their efforts came to fruition. In view of the international
situation, that was worsening on a daily basis, the report was published in a series of national journals.
A short report appeared in the Analyst [219] and the full documentation was published in Berichte
der Deutschen Chemischen Gesellschaft [220], Helvetica Chimica Acta [221,222], Journal of the Chemical
Society [223] and Journal of the American Chemical Society [224]. The bulk of the document is concerned
with general aspects of inorganic nomenclature, and coordination compounds are only dealt with in
one short (half page) section entitled Higher order compounds. The recommendation is to basically follow
the Werner system, subject to the introduction of oxidation (Stock) numbers to indicate oxidation state,
giving examples such as potassium hexacyanidoferrate(II) and potassium hexacyanidoferrate(III) for
K4[Fe(CN)6] and K3[Fe(CN)6], respectively. Coordination compounds are mentioned elsewhere in
the document and one point in which the 1940 recommendations differ from later proposals is in the
use of shortened forms of names. The rules state, “In the case of systematic names it is not always
necessary to indicate stoicheiometric proportions in the names unless there is some special reason for
doing so, because a glance at the formula shows at once the quantitative and atomic composition”,
and give examples “Potassium chloroplatinate instead of potassium hexachloroplatinate(IV). Potassium
cyanoferrate(II) instead of potassium hexacyanoferrate(II). Potassium cyanoferrate(III) instead of
potassium hexacyanoferrate(III)”. Today, potassium chloroplatinate is, at best, ambiguous and the 1940
usage implies the use of potassium chloroplatinite for K2[PtCl4]. The use of oxidation (Stock) numbers
to indicate oxidation state was explicitly proposed, together with a recommendation to discontinue the
use of the established -ic and -ous nomenclature; “The system of valency indication by terminations
such as -ous, -ic (ferrous, ferric) which was previously in use has proved unsatisfactory and should
now be avoided”.

The proposed name of potassium hexanitrocobaltiate(III) for K3[Co(NO2)6] in the UK version [220]
is revised in the US version to potassium hexanitrocobaltate [221].

The sequence of ligands in the name is to be in the order (i) acidic groups such as chloro, cyano,
cyanato, thiocyanato, sulfato, nitro, nitrito, oxalato and hydroxo; (ii) neutral groups: aquo, substituted
amines and last of all ammine. The UK publication is also inconsistent in the use of hyphenation,
with the recommendation of hexa-aquochromium(III) chloride as the name for [Cr(OH2)6]C13, whereas
the US version uses hexaaquochromium(III) chloride.

The American Chemical Society held a symposium on inorganic chemical nomenclature at its
101st annual meeting in St. Louis in 1941. This meeting recognized the importance of the work
of the IUPAC commission, “History will hardly record the year 1940 as one of general progress in
international cooperation, but nevertheless this 1940 Report ... is a giant stride towards improved and
internationally standardized nomenclature in the field of inorganic chemistry. Nothing so important
along this line has happened since the work done by Berzelius beginning in 1811 in extending the
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system of nomenclature which was introduced in 1787 by Guyton de Morveau and Lavoisier and which
has stood the test of time in remarkable manner” [225]. Nevertheless, it was early recognized that the
1940 proposals were limited and not entirely internally consistent in their discussion of coordination
compounds and that important areas, such as stereochemistry, were completely ignored [222].

5.6. The 1951 ACS Symposium

In 1951, on the occasion of the diamond jubilee of the American Chemical Society, a Symposium
on Chemical Nomenclature took place at the 120th meeting in New York. Although there had been
many conferences concerned with the mechanics and formulation of chemical nomenclature, this was
the first symposium concerned with the philosophy and underlying structure. The proceedings of
the symposium were published as the ACS Advances in Chemistry Series in 1953 and this volume is a
valuable resource to anyone interested in the early history of chemical nomenclature [226]. Of particular
relevance are the chapters entitled “Some General Principles of Inorganic Chemical Nomenclature” by
Bassett [227] and “Nomenclature of Coordination Compounds and Its Relation to General Inorganic
Nomenclature” by Fernelius [228].

5.7. The 1953 Proposals

A first revision of the 1940 proposals appeared in 1953 as a set of tentative rules [229]. These
tentative rules, which included the proposal to replace the halo- names for ligands by halido-, received
much comment and discussion at IUPAC annual meetings and resulted in the acceptance of a final
version as the 1957 rules.

5.8. Nomenclature of Inorganic Chemistry. 1957 Rules

The next IUPAC recommendations for the nomenclature of inorganic compounds date from
1957 [230] and are most readily accessed in the slightly modified form published for the North American
community [231] and in Cahn’s book An Introduction to Chemical Nomenclature [232]. The document is
very much a vision of inorganic chemistry in flux. On the one hand, it contains a number of proposals
which might be linguistically and logically justified, but which never achieved any acceptance.
These include the recommendations to use wolframate and nickelate for anions, rather than tungstate
and nickelate. The canonical publication [227] recommends the use of oxidation numbers (sodium
tetracarbonylferrate(–II) for Na2[Fe(CO)4]), whereas the US version [228] favours the additional use of
charge numbers (sodium tetracarbonylferrate(2–)), more in accord with modern practice, although -ic
and -ous were retained for elements with only two oxidation states.

The section on coordination (written coördination) compounds is relatively short. Nevertheless,
the principles are clearly stated: in formulae, the central atom symbol should be first, followed
sequentially by anionic and neutral ligands. In names, the central atom is to be placed after the
ligands. The canonical form [227] prescribes that the anionic ligands were to be cited in the order H−>

O2−> OH− > monatomic anions > polyatomic anions according to a priority list > organic anions in
alphabetical order, whereas the US version [228] prefers to place hydride at the end of the formula
and to impose a strict alphabetic sequence within monoatomic and polyatomic anions. Similarly,
the original publication cites neutral ligands in the sequence H2O > NH3 > inorganic ligands according
to a priority list > organic ligands in alphabetical order, whereas the US version prefers alphabetical
order for inorganic ligands. The priority list mentioned can be seen as the origin of the “snake table”
that appears in the 1970 recommendations. Anionic ligands should be indicated with the ending -ido,
but with exceptions including fluoro, chloro, bromo, iodo, oxo and hydroxo. The US version wanted
more exceptions (hydroxy, methoxy, hydro, etc.) to be added to the list of anionic ligands.

In tentative rules, IUPAC had proposed using aqua for water ligands. However, the power of
conservatism should not be underestimated and by the definitive rules, “However, as the old form
[aquo] is so widely used, many regarded the change as too pedantic, and the Commission has decided
to retain ‘aquo’ as an exception.” The US version explicitly prohibits the use of elisions in names: i.e.,
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hexaaquocobalt(III) not hexaquocobalt(III). The canonical version is less clear and appears to allow the
elision. In complexes with multidentate ligands, the coordinated atoms were indicated with suffixes,
for example (dithioöxalato-S,S′).

The 1957 rules do not really address stereochemistry beyond the use of the prefixes cis-, trans-,
sym- and asym-.

5.9. Nomenclature of Inorganic Chemistry. 1970 Rules

The 1970 Red Book [233] is a rather strange document, representing a scientific world which was
changing rapidly as new techniques and new classes of compounds were being discovered, but at
the same time being based upon a document predating 1957 with its own roots in the chemistry of
the early 20th century CE. For example, the use of oxidation states is fully in accord with modern
usage (2.2.5.2 iron(III) chloride for FeCl3) but at the same time the name ferrum(III) chloride (which
to the best of my knowledge has never been used by the scientific community) persists from the
1957 rules and is given equal validity. The recommendations do not attempt to make a preference
among the use of oxidation number, charge number or explicit identification of the number of
counterions, a philosophy that continues to this day. Thus, K3[Fe(CN)6] could be named potassium
hexacyanoferrate(III), potassium hexacyanoferrate(3–) or tripotassium hexacyanoferrate (but not
apparently potassium ferricyanide). The rules explicitly stated that elisions should not be used
(pentaammine not pentammine), a naming principle that is also retained.

An important definition was that the sequence of ligands in names was to be purely alphabetical
(ignoring numerical prefixes or charges on the ligands). The sequence within a formula was to be central
atom, followed by anionic ligands and finally neutral ligands. Interestingly, the report did not accept
and include the proposal to replace the ligand names chloro, fluoro, etc. with the initially proposed
chlorido- fluoride, etc. This would have to wait another 35 years for the 2005 recommendations.

For multidentate ligands, coordination modes were indicated with suffixes, for example glycinato-
O,N for chelating glycinate and glycine-N and glycine-O for N and O-bound glycine, respectively.
The rules also began to address the nomenclature challenges of organometallic compounds.

The 1970 rules also began to address the question of stereochemical nomenclature beyond simple cis-
and trans-prefixes, although the approach was to be significantly revised in the 1990 recommendations.

The 1970 Red Book also consistently used sulfur (rather than sulphur) as an element name and as
the parent for derived species such as sulfides and sulfates [234–236]. Neither the English scientific
community nor the general lexicographic community have fully accepted that the correct, and only,
spelling is sulfur.

5.10. Nomenclature of Inorganic Chemistry. Recommendations 1990

In 1978, the IUPAC Commission of Nomenclature on Inorganic Chemistry (CNIC) initiated a
project for a new, two volume edition of the Red Book to replace the 1970 rules. Formally, the 1970
Recommendations are catalogued as the second edition of the 1957 rules. Part I of this was published
as the Nomenclature of Inorganic Chemistry. Recommendations 1990 [237]. This volume was a major
revision, but a number of aspects can be identified which directly impacted coordination chemistry.
The first was a terminology point, to refer to oxidation numbers and charge numbers rather than Stock
numbers and Ewens-Bassett numbers in names (1990 flavour) such as vanadium(IV) oxide sulfate and
tetraoxosulfate(2–) for VOSO4 and (SO4)2− respectively. Another issue of terminology was the use of
didentate and tridentate to replace the more established bidentate and terdentate (vide infra).

The grammar and parsing of names and formulae resembled the 1970 rules. The sequence
of ligands in names was to be purely alphabetical (ignoring numerical prefixes) and independent
of the charge on the ligands. In contrast, the sequence within a formula was to be central atom,
followed by anionic ligands and finally neutral ligands. This resulted in the minor paradox of the
compound with formula {CoCl(NH3)5}Cl2 being named pentaamminechlorocobalt(III) chloride or
pentaamminechlorocobalt(2+) chloride. It is of note that the recommendations (a change from the
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“rules” of 1970) include an extended section on the use of stereochemical descriptors for coordination
compounds introducing the polyhedral symbol notation (I-10.5 to I-10.7) and also introduce the
kappa-notation to identify the atom or atoms through which a ligand is bound to a metal or metals
within a coordination entity (I-7.3.3.2 Note 7p).

5.11. Nomenclature of Inorganic Chemistry II. Recommendations 2000

In 2000, a second volume of recommendations, entitled Nomenclature of Inorganic Chemistry II.
Recommendations 2000 was published [238]. This document primarily addressed areas of nomenclature
which had not been covered in the 1990 recommendations. The chapters of most relevance to
coordination chemistry concerned metal complexes of tetrapyrroles (Chapter II-3) and regular
single-strand and quasi single-strand inorganic and coordination polymers (Chapter II-7). Many of the
recommendations in Chapter II-3 were revised in the 2005 document, where the naming of the parent
deprotonated tetrapyrrole ring system was changed to reflect usage in the recommendations for organic
chemistry. Coordination networks and polymers are highly topical, and the initial recommendations
highlighted the complexity of these systems and illustrated that names with a high information content
could not always be easily deconstructed to regenerate the structures. Much of the discussion centres
upon the identification and naming of a constitutional repeating unit, which is essential in the generation
of a name that is both unambiguous and unique. In particular, the discussion of coordination polymers
is rewarding and thought provoking as it identifies the need for numbering systems in polynuclear
systems (and indeed in bridging ligands) as well as the philosophical discussions of how to deal with
ligands where the parent name changes as a result of coordination. This latter topic is under active
discussion in IUPAC committees where the nomenclature consequences of desymmetrization are an
active, often heated, area of debate. It seems likely that many of the recommendations will be modified
in the context of a final set of proposals regarding the use of the κ-nomenclature.

5.12. Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005

The 2005 edition of the Red Book is the most recent (as of July 2019) and contains the
recommendations currently supported and endorsed by IUPAC [164]. One of the important features of
the 2005 publication is the clear recognition (IR-1.4) that nomenclature has multiple roles and that “Few
chemists want to use such a degree of sophistication every time they refer to a compound, but they
may wish to do so when appropriate”. As far as coordination compounds were concerned, there were
a number of changes in the 2005 recommendations.

As mentioned earlier, one significant change (IR-1.6.4, IR-7.1.1, IR-9.2.2.3) is that in coordination
entities, “anion names ending in ‘-ide’, ‘-ite’ and ‘-ate’, respectively, are changed to end in ‘ido’, ‘ito’ and
‘ato’, respectively”. The historically allowed ligand forms, fluoro, chloro, bromo, iodo, hydroxo, hydro,
cyano, oxo, etc. were replaced by fluorido, chlorido, bromido, iodido, hydroxido, hydrido, cyanido,
oxido, etc. Also recommended were changes to ligands predicated by other changes to inorganic or
organic nomenclature, such as naming coordinated −HNNH− species as hydrazine-1,2-diido ligands
(IR-1.6.2). The change of nomenclature of HNCO•− ligands from (hydridonitrido)oxidocarbonate(•1−)
to (hydridonitrato)oxidocarbonate(•1−) is equally logical, but neither name immediately suggests the
formula of the radical to this author. One recommendation that is significantly different to established
practice relates to porphyrin ligands, where the previously proposed ligand name porphyrinato(2−)
should be replaced by porphyrin-21,23-diido. It is unclear whether this latter change has been embraced
by the relevant community.

Another important, and long overdue, change was to the sequence of ligands in formulae. The new
recommendation was to order ligands, without exception, alphabetically according to abbreviation or
formula. This replaces the earlier recommendations to have the anionic ligands first. This was often
difficult in cases of non-innocent ligands or organometallic compounds. The abbreviation of the ligand
is, of course, something of a grey area, although a list of recommended abbreviations is presented
in Table VII of the IUPAC Recommendations 2005 [164]. Thus, the formula of Zeise’s salt should be
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written [Pt(η2-C2H4)Cl3]−, on the basis that C precedes Cl alphabetically, but the sequence would be
inverted in [PtCl3(H2C=CH2)]−. The new ordering also has some unexpected consequences, leading
to the formulations [Ru(en)2F2], [RuCl2(en)2], [RuBr2(en)2] and [Ru(en)2I2] (en = ethane-1,2-diamine)
within a closely related series of compounds.

5.13. The “Brief Guide”, 2015–2017

In 2015, IUPAC recognized that although all inorganic chemists should read the 366 pages of the Red
Book, very few would, and issued a document entitled “Brief guide to the nomenclature of inorganic
chemistry” in which the essentials of inorganic nomenclature were summarized [239]. This has
subsequently been made available online as a “living” .pdf document, currently in version 1.3 from
November 2017 [240]. This is an invaluable document and also provides a readily accessible version of
the “snake table”, which determines element sequences in names and formulae. This document has
been recently incorporated in a leading text-book of inorganic chemistry [241].

This review has concentrated upon the recommendations and implementation of inorganic
nomenclature in the anglophone community. The differing structures in other languages have been
mentioned in the text, but linguistic differences, ranging from a different script to differing names
form the elements, should not be underestimated. In this context, it is important to note that the Brief
Guide is available in multiple languages [242], including Basque, Danish, Dutch, French, Galician and
Spanish. I also note that these difficulties do not arise in structure-based computer-readable chemical
information systems.

5.14. Quo Vadis?

Coordination chemistry is not a dead science but is continuously evolving and generating new
challenges in structure and bonding. Interactions between metals and ligands are at the core of much
supramolecular chemistry and nanoscale chemistry. To date, nomenclature systems are struggling to
accommodate the interactions between discrete molecules that characterize supramolecular chemistry
into their systematics.

In coordination chemistry, ion-pairing is known to be of great importance in both the solid
state and solution, and a future challenge might be to incorporate descriptions of hydrogen-bonding
interactions between anions and cations into the naming protocols.

Similarly, new structural types generate new challenges. The description of the [AuXe4]2+ ion
as tetraxenonidogold(2+) (IR-9.2.2.2 in Reference [164]) appears to imply the presence of xenon(1−)
ligands and formulation as a gold(VI) complex, although the compound is reported as a gold(II)
complex [243]. In this case, the formality of the nomenclature appears to be generating a name with
incorrect information content. A more correct name might be tetraxenongold(2+).

Another area in which guidance from IUPAC might be welcomed is in the nomenclature of “simple”
anions. This is still known as hexafluorophosphate to most chemists, but current recommendations
are hexafluoro-λ5-phosphanuide or hexafluoridophosphate(1–). The latter might be preferred for
coordination compounds on the basis that both ions are named as coordination entities, but would
have the corollary that the SO4

2− and ClO4
− salts should be named as tetraoxidosulfate(2−) and

tetraoxidochlorate(−) respectively. Clarification on the use of square brackets or parentheses for anions
of this type would also be useful.

A real challenge to be addressed are the consequences for nomenclature arising from changes in
the ligand or loss of symmetry in coordination events. The basic principle of additive nomenclature is
the concatenation of the ligand names with the metal centre(s) in the coordination entity. This implies
that the name of the ligand should reflect the name of the parent species. However, changes in
symmetry can also change the preferred name of the parent, with isotopic labels being a simple case.
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6. Final Thoughts on “the Naming of Complexes”—With Apologies to T.S. Eliot

6.1. Why Bother Naming Things?

Chemical nomenclature has three primary functions: to identify compounds in normal dialogue,
to identify compounds uniquely in scientific output and to allow unique identification of materials
in databases and repositories for both industrial and scientific application. The identification of
a compound in a unique manner, either as a pure species or as a component in a formulation,
is critical in the definition and protection of intellectual property. All three of these functions
may overlap but have some exclusivities. Only in the latest incarnation of the “Blue Book” for
organic compounds has IUPAC fully implemented so-called PINs to indicate preferred IUPAC
nomenclature; a PIN is a unique name for a chemical substance which is preferred over other
possible names generated by IUPAC nomenclature rules [136]. Nevertheless, it is rather unlikely
that the PINs propan-2-one and trichloromethane will replace acetone and chloroform in the near
future in either the general laboratory vocabulary or in the wider population. In our own research,
we work on a daily basis with a compound which our publications describe with the systematic
name [(6,6′-dimethyl[2,2′-bipyridine]-4,4′-diyl)di(4,1-phenylene)]bis(phosphonic acid) (Figure 12a).
Nevertheless, the compound is always referred to in the laboratory as ALP1 (anchoring ligand
phosphonic acid 1-phenylene spacer), with a gratuitous reference to a certain range of mountains
in Switzerland.Chemistry 2019, 1, x 27 
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Figure 12. (a) The structure of the compound [(6,6′-dimethyl[2,2′-bipyridine]-4,4′-diyl)di(4,1-
phenylene)]bis(phosphonic acid), known to its friends as ALP1 and (b) the structure of phthalocyanine-
29,31-diidocopper(II).

6.2. The IUPAC International Chemical Identifier (InChI)

One approach which has great promise is to replace names in depositories and databases by
metadata which is more appropriate. The IUPAC is also a pioneer in this area, developing the
International Chemical Identifier (InChI). An InChI is human-readable (with difficulty) and machine
readable and contains all information regarding atoms and their bond connectivity, tautomeric
information, isotope information, stereochemistry and electronic charge. Often, the InChI is converted
to an InChI key, which is not human-readable. The InChIs for trichloromethane and propan-2-one
are 1S/CHCl3/c2-1(3)4/h1H/i1D and 1S/C3H6O/c1-3(2)4/h1-2H3, respectively. The corresponding
InChI keys are HEDRZPFGACZZDS-UHFFFAOYSA-N and CSCPPACGZOOCGX-UHFFFAOYSA-N,
respectively. With more complicated structures, such as ALP1 in Figure 12a, neither the InChI
(InChI=1S/C24H22N2O6P2/c1-15-11-19(17-3-7-21(8-4-17)33(27,28)29)13-23(25-15)24-14-20(12-16(2)26-
24)18-5-9-22(10-6-18)34(30,31)32/h3-14H,1-2H3,(H2,27,28,29)(H2,30,31,32)) nor the InChI key (KQAAQ
RWJGPMABM-UHFFFAOYSA-N) are far from easy for human beings to interpret.

At present, there are no PINs for inorganic and coordination compounds and so a multiplicity of
nomenclature is likely to persist in the “real world”. Machine readable alternatives, such as InChI,
still need to be fully implemented for inorganic systems in general, and coordination compounds in
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particular. Nevertheless, there is a need for the unique and unambiguous identification of coordination
compounds in the regulatory environment. The European REACH legislation (Registration, Evaluation,
Authorisation and Restriction of Chemicals) controls chemicals which are imported, prepared or used
by industry in a quantity of one tonne (1000 kg) or greater per year [244].

The need for a unique identification is readily seen with the compound phthalocyanine-29,31-
diidocopper(II) (Figure 12b), which is produced in 5000–25,000 tonne per year quantities in the United
States alone, is used as a catalyst, semiconductor, dye and as a pigment, and is sold under names
including: copper phthalocyanine, cuprolinic blue, cupromeronic blue, Monastral Blue B, Monastral
blue dye, Monastral Fast Blue, phthalocyanine blue, Heliogen Blue LBG, Heliogen Blue NCB, Heliogen
Blue BNC, Heliogen Blue BWS, Heliogen Blue IBG, Heliogen Blue BV, Heliogen Blue WX, Indolen
Blue 3G, Blue Toner GTNF, Ceres Blue BHR, Cyan Blue GT, Cyanine Blue Bnrs, Cyanine Blue LBG,
Calcotone Blue GP, Chromatex Blue BN, Helio Blue B, Linnol Blue KLG, Lionol Blue ER, Lionol Blue
KLG, Fastogen Blue BS, Fastogen Blue FP, Fastogen Blue GR, Fastogen Blue GS, Graphtol Blue BL,
Heliogen Blue BR, Heliogen Blue K, Cyanine Blue BB, Cyanine Blue BF, Cyanine Blue C, Cyanine
Blue HB, Lumatex Blue B, Cyanine Blue Rnf, Bahama Blue BC, Bahama Blue BNC, Bahama Blue
WD, Copper(II) phthalocyanine, MFCD00010719, C.I. Pigment Blue 15, Aqualine Blue, Fastolux Blue,
Bermuda Blue, Fastogen Blue B, Heliogen Blue A, Heliogen Blue B. Furthermore, the compound exists
in a number of polymorphs which have different solubility and reactivity.

As a final comment, one should ask whether nomenclature is a book-keeping exercise, a robust
intellectual framework for developing and extending understanding or even a driver for new
research directions.

This short article has attempted to show that nomenclature provides a platform for the
understanding of chemistry and a drive for developing models to explain new phenomena.
Nevertheless, sometimes nomenclature itself can be a driver. I strongly suspect that studies into the
higher oxidation state of krypton might have been motivated by the search for kryptic acid [245]!
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