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Abstract: When a quantum field is in contact with a thermal bath, the vacuum state of the field may
be generalized to a thermal vacuum state, which takes into account the thermal noise. In thermo
field dynamics, this is realized by doubling the dimensionality of the Fock space of the system.
Interestingly, the representation of thermal noise by means of an augmented space is also found
in a distinctly different approach based on the Wigner transform of both the field operators and
density matrix, which we pursue here. Specifically, the thermal noise is introduced by augmenting
the classical-like Wigner phase space by means of Nosé–Hoover chain thermostats, which can be
readily simulated on a computer. In this paper, we illustrate how this may be achieved and discuss
how non-equilibrium quantum thermal distributions of the field modes can be numerically simulated.
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1. Introduction

According to quantum field theory, the vacuum is filled by fluctuating quantum fields. Such fields
are present both in condensed matter systems [1–6] and, more generally, in empty space-time, where
their existence is believed to be linked to dark matter and dark energy [7–16]. Universal phenomena
such as the emergence of order, symmetry breaking, and phase transitions are related to the thermal
degrees of freedom the first time in order to stress that we are not using the expression in a literal
meaning. of the fields [17,18]. Hence, the study of the thermal excitation of the quantum vacuum
is of interest to many research areas [19–23]. In thermo field dynamics [24–26], the vacuum state is
generalized to a thermal vacuum state by doubling the dimension of the Fock space of the original
vacuum. The additional dimension of the Fock space represent the degrees of freedom of the thermal
bath, which are involved in the excitation and de-excitation processes of the thermal system.

In this paper, we illustrate an approach to simulate the thermal distributions of bosonic
fields [27–34] on a computer, which exploits the Wigner formulation of quantum field theory [35–40].
When considering a free field, it is useful to first express the field operators and density matrices
in terms of creation and annihilation operators. The creation and annihilation operators are then
mapped onto canonical position and momentum operators, which are finally Wigner transformed.
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When the initial state of the field is pure, the Wigner distribution function of the field is expressed as
an infinite product of the Wigner distribution functions [41–43] of the single field modes. This is also
the case for a quantum thermal state of an infinite set of free field modes, i.e., the thermal Wigner
function of the field is an infinite product of the thermal Wigner functions of the modes. In practice,
it is possible to simulate quantum thermal distributions with a different temperature for each mode
and to define a time-dependent temperature. This is achieved by means of a technique called massive
Nosé–Hoover chain (NHC) thermostatting [44,45], which, in our case, involves coupling a separate
NHC thermostat [44,45] to each mode. Since one requires a method that can be practically implemented
on a computer, the Fock space is truncated to become a many-dimensional (but finite) Hilbert space.

It should be noted that, in spite of their theoretical differences, the Wigner representation of
the thermal vacuum that is obtained in our approach is analogous to the one given in thermo field
dynamics [24–26]. As in thermo field dynamics, where the additional degrees of freedom represent
the thermal bath, the Wigner phase space of the thermal system is augmented by the NHC degrees
of freedom [44,45]. In practice, because each NHC can often be realized with just two Nosé–Hoover
thermostats chained to each other, the dimension of the thermal Wigner phase space is tripled.

A Wigner representation of the modes of the field [46] has certain technical and conceptual
advantages. First, since each mode is independently thermostatted, it is easy to generate a
non-equilibrium quantum thermal distribution of the field by assigning each mode a different
thermodynamic temperature. Secondly, there is no technical difficulty in making the mode
temperatures time dependent. As will be explained below, this feature can be exploited to simulate
the passage from a quantum thermal distribution of the modes to a classical one. The generalization
of our formalism to situations where the field is coupled to a spin system [47–57] is left for future
work. Such an endeavour could lead to new computational experiments on spin dynamics, which
to the best of our knowledge, would be novel. We propose one such computational experiment in
the Conclusions.

The paper is organized as follows. In Section 2, we show how to represent the dynamics and
averages of bosonic field modes in Wigner phase space. In Section 3, we discuss how a bosonic thermal
state is described within the Wigner representation of quantum field theory. We also illustrate how to
control the temperature of each field mode on a computer. Finally, our conclusions and perspectives
are given in Section 4.

2. Wigner Formulation of Bosonic Field Theory

Let us consider a quantum bosonic free field, confined to a finite region of space. This field
possesses discrete mode frequencies, ωJ , and bosonic creation and annihilation operators, âJ and â†

J ,
where J is an integer. The Hamiltonian operator of the free field reads [38,46]:

Ĥ(â,â†) = ∑
J

h̄ωJ

(
â†

J âJ +
1
2

)
, (1)

Let us now define the following canonical transformation:

âJ =
1√
2h̄

(
λJQ̂J +

iP̂J

λJ

)
, (2)

â†
J =

1√
2h̄

(
λJQ̂J −

iP̂J

λJ

)
, (3)

where Q̂J and P̂J are Hermitian operators obeying the canonical commutation relation [Q̂J , P̂J′ ] = ih̄δJ J′ .
The scaling factor λJ is equal to √mJωJ when the field consists of oscillators of mass mJ or is equal to
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λJ =
√

h̄(ωJ/c) in the case of an electromagnetic field [46]. Upon substituting Equations (2) and (3) in
Equation (1), we obtain another representation for the discretized quantum free field Hamiltonian,

Ĥ(Q̂,P̂) = ∑
J

[
ωJ P̂2

J

2λ2
J

+
ωJλ

2
J Q̂2

J

2

]
, (4)

Since any initial state of the field can be expanded in the basis of Fock states, we consider a
multimode Fock state. This can be written as:

|Φ〉 = |n1, n2, ..., nK, ...〉 =
(â†

1)
n1

√
n1 + 1

(â†
2)

n2
√

n2 + 1
· · ·

(â†
K)

nK
√

nK + 1
· · · |0〉

=
∞

∏
J=1

(â†
J )

nJ√
nJ + 1

|0〉 ≡
∞

∏
J=1
|ΦJ〉 , (5)

where nJ is the occupation number of state J. To each state |ΦJ〉, one can associate a single mode
density matrix, i.e., ρ̂J = |ΦJ〉〈ΦJ |. Therefore, the total density matrix of the field is an infinite tensor
product of the single mode density matrices:

ρ̂ =
∞

∏
J=1

ρ̂J . (6)

We can now define the Wigner transform [41–43] of each mode’s density matrix as:

WJ(QJ , PJ) =
1

(2πh̄)d

∫
dZeiP·Z/h̄〈QJ −

Z
2
|ρ̂J |QJ +

Z
2
〉 , (7)

where d is the dimension of the spatial region in which the field is confined. The Wigner distribution
function of the field is therefore given by:

W(Q, P) =
∞

∏
J=1

WJ(QJ , PJ) , (8)

where the field-mode coordinates, (Q, P) = (Q1, Q2, . . . , P1, P2, . . .), are c-numbers in Wigner phase
space [42,43].

We now consider the quantum averages of generic bosonic field operators, Ô, in the second
quantized form:

〈Ô(t)〉 = Tr(ρ̂(t)Ô) . (9)

If Ô is symmetrically ordered with respect to the âJ and â†
J operators [46], that is,

Ô =
∞

∏
J=1

∞

∑
m,n=0

bnm
1
2

[
(â†

J )
n âm

J + âm
J (â†

J )
n
]
≡

∞

∏
J=1
ÔJ , (10)

where bnm are expansion coefficients, then we can introduce the Wigner transform of Ô as:

OW(Q, P) =
∞

∏
J=1

∫
dZJeiPJ ·ZJ /h̄〈QJ −

ZJ

2
|ÔJ |QJ +

ZJ

2
〉. (11)

Under the restriction for the field observables mentioned above, averages can then be calculated as [46]:

〈Ô(t)〉 = Tr(ρ̂(t)Ô) =
∫

dXW(Q, P, t)OW(Q, P) , (12)
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where, in practice, in order to obtain the Wigner transform of operators Ô obeying the condition
mentioned above, one first uses the canonical transformations in Equations (2) and (3) and then
replaces the operators (Q̂J , P̂J) with the c-numbers (QJ , PJ). For example, the Wigner transform of the
field Hamiltonian in Equation (1) reads:

H(Q,P) = ∑
J

[
P2

J

2µJ
+

µJω
2
J Q2

J

2

]
= ∑

J
H J

W(QJ , PJ) , (13)

where µJ = λ2
J /ωJ . Equation (13) is just the c-number version of Equation (4).

In the Wigner representation, the quantum vacuum field equations in the Heisenberg picture:

d
dt

âJ(t) =
i
h̄

[
Ĥ(â,â†), âJ(t)

]
, (14)

d
dt

â†
J (t) =

i
h̄

[
Ĥ(â,â†), â†

J (t)
]

, (15)

become:
d
dt

XJ = −HX
←−∇B−→∇XJ(t) , (16)

where X = (X1, X2, . . . , XJ , . . .) (with XJ = (QJ , PJ)), ∇ = ∂/∂X, and the direction of the arrow
indicates the direction in which the operator acts. The matrix B is the constant symplectic matrix [58]:

B =

[
0 1
−1 0

]
, (17)

whose specific form gives rise to the Poisson bracket [58] on the right hand side of Equation (16)
(where 1, for example, denotes an infinite-dimensional block diagonal matrix of ones). Equation (16)
is equivalent to Equations (14) and (15), showing that the quantum dynamics of a harmonic system
may be exactly mapped onto a classical-like time evolution. In this case, the quantum character of the
system enters the description through the initial conditions.

In the next sections, we will see how the use of the Wigner representation allows one to exploit
the many numerical algorithms originating from molecular dynamics simulation in order to propagate
the degrees of freedom represented in phase space.

3. Computer Simulation of Thermal Field States

The field Hamiltonian in Equation (1) is isomorphic to a Hamiltonian of a collection of
non-interacting harmonic oscillators [59–62]. The thermal Wigner function, WT

J , of a harmonic mode
has the following analytical form [46]:

WT
J (QJ , PJ) =

ωJ β̃ J(ωJ)

2π
exp

[
−β̃ J(ωJ)H J

W(QJ , PJ)
]

, (18)

where:

β̃ J(ωJ) =
2 tanh

(
βωJ

2

)
ωJ

, (19)

is a frequency-dependent inverse temperature with β = 1/kBT, and the Hamiltonian H J
W(QJ , PJ) of

the Jth mode is defined in Equation (13). The thermal Wigner function of the field is:

WT(Q, P) =
∞

∏
J=1

WT
J (QJ , PJ) . (20)
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Equations (18)–(20) show that, in the Wigner representation, the thermal state of a free field is given
in terms of an infinite product of single mode Wigner functions. Each of these single mode Wigner
functions is a Boltzmann factor with a frequency-dependent temperature, as defined in Equation (19).
Thus, the thermal vacuum state requires each oscillator to have a minimum average energy consistent
with the temperature constraints fixed by Equation (19). In a numerical simulation, the number of
oscillators in Equation (20) for the thermal state of the free field must be truncated to a finite number
N, i.e.,

W̃T(Q, P) =
N

∏
J=1

WT
J (QJ , PJ) . (21)

The dynamics of this field can be simulated by first sampling the initial (QJ , PJ) from the
Boltzmann factors WT

J (QJ , PJ) for each of the N modes and then propagating the modes in time
by numerically solving Equation (16). Since Equation (16) generates constant energy trajectories,
the thermal equilibrium distribution in Equation (21) is an invariant of the energy conserving phase
space flow of the free field. It should be noted, however, that the invariance is broken when the field is
coupled to another system. The lack of invariance of the thermal distribution arises ultimately from
the non-conservation of the free field Hamiltonian in the presence of the coupling.

In addition to the case when the field is coupled to another system [47–57] there are a number of
cases when it is desirable to simulate the dynamics of the thermal field state [27–34] on a computer.
To this end, we employ a Nosé–Hoover chain (NHC) thermostat [44,45], which may be theoretically
defined in terms of a quasi-Lie bracket [63–66]. In general, NHC thermostats are used to increase the
ergodicity of the dynamics of non-ergodic systems, such as a system of harmonic oscillators. In NHC
thermostatted dynamics, the phase space point of oscillator J is extended as follows:

X̃J = (QJ , ξ J
1, ξ J

2, . . . , ξ J
n, PJ , χJ

1, χJ
2, . . . , χJ

n) , (22)

where ξ J
K and χJ

K denote the position and momentum, respectively, of the Kth thermostat in the chain
attached to mode J and n defines the length of the chain. The energy of the NHC thermostat is
given by:

HNHC(χ, ξ) =
N

∑
J=1



(

χJ
1

)2

2M1
+ NkBTJξ

J
1

+
n

∑
K=2


(

χJ
K

)2

2MK
+ kBTJξ

J
K


 . (23)

The temperature control of the physical coordinates, X, of the field by the fictitious NHC phase
space coordinates, denoted collectively by (χ, ξ), is realized by solving a set of quasi-Hamiltonian
equations of motion (shown below in Equation (28)). The inertial parametersMK (where K = 1, . . . , n)
control the speed of the response of the thermostat variables to the imbalance between the
instantaneous kinetic energy of each mode, P2

J /2µJ , and the kinetic energy corresponding to its
desired temperature TJ , kBTJ , where kB denotes the Boltzmann constant. Finally, the Hamiltonian of
the field together with the NHC thermostat is:

Htot = H(Q,P) + HNHC(χ, ξ) . (24)

In order to illustrate the theory, for convenience, we set the number of thermostats in the NHC to
n = 2. The quasi-Hamiltonian equations of motion are given by:

d
dt

X̃J(t) = −Htot
←−∇BNHC

−→∇ X̃J(t) , (25)
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where ∇ = (∂/∂Q1, . . . , ∂/∂QJ , ∂/∂ξ J
1, ∂/∂ξ J

2, ∂/∂PJ , ∂/∂χJ
1, ∂/∂χJ

2, . . . , ∂/∂χN
2 ) and:

BNHC =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 −P 0
0 −1 0 P 0 −χ1

0 0 −1 0 χ1 0


(26)

is the antisymmetric matrix that generalizes the symplectic matrix, defining the quasi-Hamiltonian
NHC phase space flow (where each element of the matrix in Equation (26) is an N × N block diagonal
matrix, e.g., P is an N × N block diagonal matrix containing the PJ ’s along the diagonal). The right
hand side of Equation (25) defines the quasi-Lie bracket [63], which generalizes the Poisson (Lie)
bracket to the case of NHC dynamics [44,45]. It should be noted that the coupling between the field
and the NHC thermostat does not arise from the Hamiltonian in Equation (24), but from the the matrix
BNHC in the quasi-Hamiltonian equations of motion in Equation (26). Finally, the initial thermal
Wigner function in the extended space is given by:

W̃T(X̃) =
N

∏
J=1

WT
J (QJ , PJ)

2

∏
K=1

δ
(

ξ J
K − ξ J

K(0)
)

δ
(

χJ
K − χJ

K(0)
)

. (27)

Its equation of motion reads [67]:

∂

∂t
W̃T(X̃, t) = Htot

←−∇BNHC
−→∇W̃T(X̃, t)− κW̃T(X̃, t) , (28)

where:

κ =
6N

∑
K=1

∂ ˙̃XK

∂X̃K
=

6N

∑
K=1

6N

∑
J=1

∂BKJ
NHC

∂XK

∂Htot

∂XJ
(29)

is the compressibility of the phase space. The emergence of the compressibility of the phase space
in Equation (28) is a signature of the effects of the quasi-Hamiltonian evolution of the coordinates
on the Wigner function. To understand fully how the compressibility arises, one can introduce the
Wigner–Liouville operator iL = −Htot

←−∇BNHC
−→∇ from Equation (25) into the expression for the

Wigner phase space average of a generic operator Ô in the Heisenberg picture, i.e.,

〈O(t)〉 =
∫

dXWT(X)ei
−→L tOW(X) . (30)

Upon integrating by parts, one obtains the corresponding expression in the Schrödinger picture:

〈O(t)〉 =
∫

dXWT(X)e−i
←−L †tOW(X) , (31)

where the adjoint Wigner–Liouville operator is given by:

− iL† = Htot
←−∇BNHC

−→∇ − κ . (32)

From a very different perspective, Equations (27) and (28) achieve a similar goal to that of thermo
field dynamics: the thermal state is represented in a manner analogous to a pure state, but in a space
with additional dimensions, viz., the extended Fock space in thermo field dynamics or the extended
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Wigner phase space in the current formulation. The main difference is that the additional coordinates
of the NHC thermostats in the extended Wigner phase space are treated classically.

The possibility of separately controlling the temperature of each mode by means of an NHC
thermostat may lead to the design of computational experiments that, to our knowledge, have not been
performed before for quantum processes. For example, starting from the quantum initial condition
in Equation (27) and then setting β̃ J = β for J = 1, ..., N (which corresponds to the classical limit) in
the NHC dynamics generate a nonequilibrium situation, from which the field would ultimately reach
its classical thermal state. In a situation where the field is no longer isolated, it would be interesting
to investigate how the time dependent classical limit of the field would modify the dynamics of the
coupled system. Moreover, the classical limit may be applied to groups of modes so that one can study
how each group affects the dynamics of the coupled system.

4. Conclusions

In this paper, we discussed how pure and thermal states of free bosonic fields [27–34] can be
represented theoretically and simulated computationally. The simulation protocol, which involves
an NHC thermostat [44,45] coupled to each field mode, propagates the dynamics of a thermal state
living in an extended Wigner space [67]. This is conceptually similar to what is done in thermo field
dynamics [24–26].

For simplicity, the theory was only applied to the free field case [38], in order to demonstrate
the technicalities associated with coupling a different NHC thermostat [44,45] to each field mode.
However, this theory is intended for situations where the field is coupled to a spin system [47–57].
In this case, the use of NHC thermostats in the dynamics of the thermal state of the field would make it
possible to simulate processes that, to our knowledge, have not been investigated so far. For example,
NHC dynamics could allow one to simulate the transition from a vacuum field state to a thermal
vacuum state (or to thermally excited states of the field). Then, one could study changes in the spin
system’s transport properties in response to various field thermal processes. Such applications are left
for future work.
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