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Abstract: We propose a method for the estimation of the spectral response of a photodetector,
using only the variation of the temperature of a black body source without the need of an expensive
monochromator or a circular filter. The proposed method is suitable especially for infrared detectors in
which the cut-off wavelength and the responsivity vs. wavelength is not exactly known. The method
provides a rough estimation of the spectral response solving a Fredholm integral equation of the first
kind. The precision of this technique depends on the temperatures at which the detector output is
measured. Some examples are given for illustration.
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1. Introduction

Infrared photodetectors are currently used in many applications; in civil and military
applications [1], in particular for surveillance [2,3], target detection and tracking for missile systems
and night vision in battlefields [4]. Other applications concern satellite imaging and astronomical
observations. One of the most promising fields of application is the passive detection of infrared
radiation coming from objects in a given field of view. In order to design an infrared passive system
it is mandatory to know the parameters characterizing the detector [5]. For the staring detectors the
noise-equivalent temperature difference (NETD) is very important because it gives information about
the sensitivity of the 2D array. Another important parameter is the responsivity. Responsivity can
be defined as the ratio between the electrical signal of the detector and the incident optical power.
The black body responsivity is defined as the ratio of the signal (voltage or current) and the total power
emitted by a black body [6]:

Rbb =
V

σT4 . (1)

where V is the output voltage of the detector, σ is the Stefan-Boltzmann constant and T is the absolute
temperature (in K).

Unfortunately, in the case of real detectors, only a little amount of this power is ‘seen’ by the
detector and in particular in the case of photonic detectors, only the power between zero wavelength
and cut-off wavelength creates electron–hole pairs. So the real responsivity [6] is the ratio between the
electrical signal and the power, which can also be expressed:

J(T) =
∫ ∞

0
Wλ,TS(λ) dλ, (2)
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where λ is the wavelength in µm, Wλ,T represents the Planck radiation law:

Wλ,T =
C1

λ5
1

exp ( C2
λT )− 1

, (3)

and S(λ) is the spectral response of the detector [6]. Here C1 and C2 are Kirchoff constants. When the
detector is made using a single element semiconductor like silicon or germanium, the cut-off
wavelength and the spectral are known with a little error [7]. Moreover, in the case of two element
alloys like InSb the cut-off wavelength can be considered known and so the S(λ). The case of HgCdTe,
for example, is quite different because the cut-off wavelength and the spectral response function S(λ)
could be unknown if we do not know the molar ratio of HgTe and CdTe. Taking into account this
problem, it is very important to measure or to estimate the spectral response function [2]. The best
method is to use a monochromator [8,9] in order to measure it exactly, but this is a very expensive
device that may not be always available in the laboratory. For a rough estimate of this quantity we
propose a method based only on the variation of the temperature of a calibrated black body.

2. The Method

The study should be conducted considering the black body as a radiating source. The black-body
radiation power is given by Equation (3) where the Kirchoff constants are C1 = 37,418 and C2 = 14,388.
The radial spectral density curve, calculated, for example, at 500 K, is reported in Figure 1. Integrating
the Planck function between λ = 0 and λ = ∞, it is possible to calculate the incident power on a
photodetector as:

P =
σT4

π

πr2

L2 πr2
0, (4)

where r is the radius of the black-body aperture in µm, r0 is the radius of the receiver’s optical aperture
in µm, L is the distance between the black body and the photodetector in cm, σT4 is computed from
the Stefan-Boltzman equation:

σT4 =
∫ ∞

0
Wλ,T dλ. (5)

Figure 1. Energy density curve for T = 500 K.
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Given the incident optical power with the photodetector it is possible to compute the black-body
responsivity as the ratio between the photodetector output voltage (or current) and the optical incident
power [10–12]:

Rbb =
V
P

. (6)

Equation (6) does not take into account the spectral response of the photodetector that increases
until the cut-off frequency, where it falls to zero. In order to know the exact amount of optical power
seen by the detector it is very important to know the spectral response of the detector. In general,
this function can be obtained using optical devices like filters or monochromators [13]. The peak
responsivity, Rλ, which is a function of the spectral response of the photodetector, is:

Rλ =
J(T)

π

πr2

L2 πr2
0, (7)

where J(T) is the integral of Equation (2). From Equation (2) it is possible to compute the photodetector
peak responsivity taking into account the function J(T). For this purpose, considering the expression:

V(T) =
πr2

0r2Rλ

L2 J(T), (8)

and defining β as:

β =
πr2

0r2Rλ

L2 , (9)

the photodetector output voltage is proportional to the function J(T) by the constant β. Observing
Equation (2), one notes that the upper integration limit coincides with the sensor’s cut-off wavelength
as soon as there is no response above the cut-off frequency. So, the expression for J(T) can be written as:

J(T) =
∫ λco

0
Wλ,TS(λ) dλ. (10)

The equation is tied to the temperature [11] so that, in general, there will be an integral function
for each temperature Tj:

V(Tj) = β
∫ λco

0
Wλ,Tj S(λ) dλ. (11)

This is the known as the Fredholm integral [14] of the first kind where the unknown function
is the spectral response S(λ) [15–17]. There are a lot of methods to solve integral equations in the
literature and every method has advantages and disadvantages.

3. Generality of the Problem

Starting from the Fredholm integral of the first kind [14], it is necessary to find out a method for
estimation of the unknown function f (t):

g(x) =
∫ b

a
h(x, t) f (t) dt. (12)

The generic function f (x) can be expressed as a series of functions [14] where φ(x, k) are the
basis functions:

f (x) =
N

∑
k=0

akφ(x, k). (13)

The integral will be:

g(xk) =
N

∑
k=0

ak

∫
abh(xk, t)φ(x, k) dt. (14)
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Now it is possible to use the matrix formalism in order to obtain: g(x0)
...

g(xN)

 =

J0(x0) . . . JN(x0)
...

. . .
...

J0(x0) . . . JN(xN)


 a0

...
aN

 , (15)

where:

Jj(xk) =
∫ b

a
h(xk, t)φ(xj, t) dt. (16)

So, in a compact representation, the vector g(x) is the product of the matrix J(T) and the coefficient
vector a:

g = Ja. (17)

From Equation (19) one calculates the coefficients a:

a = J−1g. (18)

Once all the coefficients have been computed, it is possible to reconstruct the unknown function
f (t). The robustness of the estimation method against the measurement error is discussed in
Appendix A.

4. Estimation with Basis Function

In this paper, some basis functions have been identified for the approximation of the spectral
response of photodetectors.

• Power series. Here, the spectral response is estimated as [14]:

S(λ) =
N

∑
k=0

akλk, (19)

then the integral J(T) is:

Jk(Tj) =
∫ λco

0
Wλ,Tj λ

k dλ. (20)

• Laguerre polynomials. The polynomials are defined as [14]:

Ln(x) =
ex

n!
dn

dxn (e
−xxn). (21)

In this case one gets:

S(λ) =
N

∑
k=0

akL(k, x). (22)

The integral expression for the computation of the matrix elements reads:

Jk(Tj) =
∫ λco

0
Wλ,Tj L(k, x) dλ. (23)

• Hermite polynomials. These polynomials are defined as [14]:

Hn(x) = (−1)nex2 dn

dxn e−x2
. (24)
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The integral expression for the computation of the matrix elements is:

Jk(Tj) =
∫ λco

0
Wλ,Tj H(k, x) dλ. (25)

• Sinc function. This function is defined as [14]:

Sinc(x) =

{ sin(πx)
πx if x 6= 0;

1 if x = 0.
(26)

The resolution of the Fredholm equation requires some manipulations with the function. In a
finite interval [a, b] it can be considered a basis function,

z(x, k) =
sin(π(µ(x)−kh)

h )
π(µ(x)−kh)

h

, (27)

where:
µ(x) = ln(

x− a
b− x

), (28)

and h is the sample step. Then, the function, integrated in order to calculate the elements of the
matrix J(T), is:

Jk(Tj) =
∫ λco

0

sin(π(µ(x)−kh)
h )

π(µ(x)−kh)
h

Wλ,Tj dλ. (29)

Considering the function Sinc, from its symmetry, the sum runs from −N to N:

S(λ) =
N

∑
k=0

akz(x, k). (30)

5. Results

The analysis was carried out using Matlab R©. The first step was to simulate a photodetector
output voltage measurement using a known spectral response. This allows us to have a vector of
elements that is just the output voltage to the photodetector. The function that best approximates
the normalized spectral response of a photonic detector (InSb, HgCdTe [18,19]) operating in the first
atmospheric window is [20]:

S(λ) =
4

625
(−λ4 + 25λ2). (31)

The performance of this function is shown in Figure 2. The analysis was carried out in the band
[0–5] µm. From the figure we notice that at the extremes of the band the spectral response is canceled.
Moreover, if when using this function for a higher wavelength it has negative values, there are at that
time no problems because it is only used in the right band. Subsequently, we move to the calculation of
the spectral response using the tension vector found by the previous simulation; this type of approach
is permitted, as the actual voltage measurements are known. For the calculation of S, we proceeded
in the way discussed in Section 3 by evaluating the performance of the basis functions. Basically
speaking we have a vector of tensions V(Tj) varying the black-body temperature, a metric obtained
by Equation (16) and an unknown vector of coefficients of the series in Equation (14) in which now
f (x) = S(λ).
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Figure 2. Theoretical spectral response used for simulations.

5.1. Power Series Approximation

In this case we have selected a power series for the basic function. The procedure described
in Section 2 allows us to evaluate the performance in terms of system error. The error was
calculated computing the difference between the desired function and the reconstructed function.
Other factors to be considered are the inversion of the matrix J and the number of points to
be used in the reconstruction. The analyses were conducted at T = [500–700] K, λ = [0–5] µm,
L = 10 cm, r0 = 0.01 cm, r = 0.1 cm, Rλ = 105 V/W. The parameter that was varied was the number of
points N, for values up to N = 7. One can rebuild the spectral response function S very accurately,
but with an increase in the number of points, Matlab R© does not guarantee with enough precision
with the inverse matrix computation. In the case of N = 7, we can see how the function is estimated.
Looking at Figure 3 the curves are superimposed in the seven points where the function is estimated
with the power series. It is possible to estimate the function with a maximum error of 6.78× 10−6,
the error is calculated with the difference between the known function and the reconstructed one with
the basic function. Because of the mathematical features of the power series, as soon as the number
of points increase, the basis function cannot be used to accurately describe the unknown response
function. Moreover, one faces difficulties with the inverse matrix of J as its determinant is of the order
of 10−53. Obviously, the error increases proportionally to the number of points. For example, in the
case of N = 10 there is a difference between the reconstructed and the known function of 0.932, which
is very high considering that the maximum of the function is 1 (Figure 3).
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Figure 3. Spectral response function reconstruction with power series.

5.2. Laguerre Polynomials Approximation

In this case the basis functions are Laguerre polynomials. From Equation (21) one can see that even
in this case it is possible to face difficulties similar to those seen with the power series approximation.
The simulation parameters were the same as before and we assessed how far we could increase the
degree of the Laguerre polynomial. From the analyses carried out in such conditions, we can push the
order of polynomials up to N = 8 with an error of 0.0013 (Figure 4). Moving to N = 9 it is no longer
possible to reconstruct the function, and the inversion of matrix J is not accurate.

Figure 4. Spectral response function reconstruction with Laguerre polynomials.
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5.3. Hermite Polynomials Approximation

In this case the number of points is taken even smaller in order not to face difficulties with the
reconstruction and with the inversion of the matrix. In fact a number of points less than N = 6 were
used. Let us analyse the case of N = 5. The ideal curve and the real curve are superimposed, so the
reconstruction was done correctly, considering also that the error is 6.23× 10−11. By raising the number
of points and then the degree of polynomials, we have a good reconstruction of the function, but one
faces difficulties with the inverse of the J matrix for N = 7 (Figure 5).

Figure 5. Spectral response function reconstruction with Hermite polynomials.

5.4. Approximation with Sinc Functions

For the estimation of the spectral response with the Sinc function, we need to make additional
considerations since the basis function of Equation (27) seen in the previous section gets difficulties
at the extremes of the range. At the λ = 0 µm the logarithm tends to minus infinity and therefore
this limits the approach. Therefore, we restricted the band considering a lower wavelength of 1 µm.
As far as the upper peak is concerned, in the cut-off frequency analysis we have the deletion of the
denominator of the fraction in the logarithm Equation (4) and therefore not a suitable value for the
analysis. To this purpose, we shifted a small amount with respect to the cut-off frequency in order
to avoid the zero in the denominator of the logarithm. In the case of Sinc, we have seen that the sum
of the spectral response reconstruction goes from −N to N, so the analysis is made on 2N + 1 points.
Let us evaluate the case with N = 4 (Figure 6). It can be noted that the function is reconstructed fairly
faithfully up to the cut-off frequency where we find a deviation between the reconstructed and ideal
spectral response. In this case, however, the inversion of matrix J is not accurate. We propose the
analysis with N = 2 where we have a corrected inverse matrix but loose the maximum of the function
(Figure 6).
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Figure 6. Spectral response function reconstruction with “Sinc” functions.

6. Conclusions

The proposed method is useful whenever the spectral responsive function of a detector is
unknown. We proposed several basis functions to solve the Fredholm integral equation obtained
varying the black-body temperature. With this method we can get a rough approximation of the
spectral response and so of the cut-off wavelength. The roughness of the spectral response estimation
depends on the number of measurements carried out. We applied this method using a simulated but
realistic spectral response and we showed that it is one that can rebuild the function with a good level
of approximation using only five or six measurements. It is worth noticing that the requirement time
of the measurements process is of about 20–30 min overall.

7. Patents

EU Patent EP2947435(A1): Method for Estimating the Spectral Response of An Infrared
Photodetector

US Patent US20150330837: Method for Estimating the Spectral Response of An Infrared
Photodetector

IT Patent 0001423853: Metodo per la stima della risposta spettrale di un fotorilevatore ad infrarossi
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Abbreviations

The following abbreviations are used in this manuscript:

NETD Noise equivalent temperature difference

Appendix A. Measurement Error Analysis

The method for estimating the spectral response of electro-optical sensors is robust compared to
measurement errors. The errors can be both related to the accuracy of the tools used for voltage reading
and the error on measuring the temperature of the black body. The errors related to the diameter of the
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opening of the black body and the diameter of the optics turn out to be negligible. The analysis of the
errors introduced is reported below, and performed as follows.

• Addressing the integral (Equation (2)) one can analyze the variation with respect to the temperature
of the black body:

∆J =
∣∣∣∣ δJ
δT

∣∣∣∣∆T, (A1)

considering a black body temperature of between 400 and 600 ◦K; the derivative of the previous one
is less than 1. It follows that using a perfectly calibrated black body, the error in the measurement
of the temperature does not affect the integral (Figure A1).

Figure A1. ∆J at according to the temperature of black-body.

• With regard to the error introduced in the voltage, one can write the equation (Equation (18))
in which the vector g(x) is given by the voltage measurements V:

V ± ∆V = J(a + ∆a). (A2)

We assume that:
∆V = kV, k << 1. (A3)

The a coefficients can be written as:

J−1V ± J−1∆V = a + ∆a. (A4)

Resolving Equation (A4) with respect to ∆a one obtains:

a± J−1∆V = a + ∆a, (A5)

∆a = ±J−1kV, (A6)

∆a = ±ka. (A7)

Then a small variation of V results in a small variation of a.
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In what follows, the spectral response function is reconstructed by adding to the voltage a ∆V
error of 1% with respect to the nominal value of the measured voltage (Equation (A2)), V. This ∆V
takes into account the measurement error that can be committed in the acquisition of the sensor output.
The analysis is carried out for the same cases as discussed in Section 5.

Appendix A.1. Power Series Approximation

In the case of power series approximation with N = 7, the function is reconstructed in the same
way as without error (Figure A2), and the difference between the reconstructed spectral response with
the measurements without error (V) and the reconstruction made with the measurements containing
the error (V + ∆V) is reported in Figure A3.

Figure A2. Reconstruction of the spectral response function with power series compared to the 1%
voltage error case.

Figure A3. The difference between the spectral response with 1% error in the voltage and without it
using the power series approximation.
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Appendix A.2. Laguerre Polynomials Approximation

In the estimation of the spectral response with the Laguerre polynomials (N = 8), the function is
reconstructed similarly to as the no-error reconstruction (Figure A4), and the difference between the
reconstructed spectral response with the measurements without error (V) and the reconstruction made
with the measurements containing the error (V + ∆V) is reported in Figure A5.

Figure A4. Reconstruction of the spectral response function with Laguerre polynomials compared to
the 1% voltage error case.

Figure A5. The difference between the spectral response with 1% error in the voltage and without it
using Laguerre polynomials.

Appendix A.3. Hermite Polynomials Approximation

The estimation of spectral response S(λ) with the Hermite polynomials (N = 7) reconstructed in
the same way as in the case without error is shown in Figure A6, and the difference in the estimate
between the case with a 1% error in the voltage and the ideal case without error is represented in
Figure A7.
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Figure A6. Reconstruction of the spectral response function with Hermite polynomials compared to
the 1% voltage error case.

Figure A7. The difference between the spectral response with 1% error in the voltage and without it
using Hermite polynomials.

Appendix A.4. Approximation with Sinc Functions

The estimation of spectral response S(λ) with the Sinc functions (N = 4) was reconstructed in the
same way as the case without error (Figure A8), and the difference in the estimate between the case
with a 1% error on the voltage and the ideal case without error is represented in Figure A9.
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Figure A8. Reconstruction of the spectral response function with Sinc functions compared to the 1%
voltage error case.

Figure A9. The difference between the spectral response with 1% error on the voltage and without it
using Sinc function approximation.
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