2017

MATHEMATICS

(Major)

Paper: 1.2

(Calculus)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: $1 \times 10 = 10$
 - (a) Write the *n*th derivative of $\sin^3 x$.
 - (b) If $f(x, y) = 3x^2y + 2xy^2$, find $f_x(1, 2)$.
 - (c) State Euler's theorem on homogeneous function of degree n for two variables.
 - (d) Write the subtangent of the curve $y^2 = 4ax$.
 - (e) Define asymptotes.
 - (f) Write the value of $\int_{-a}^{a} x^3 \sqrt{a^2 x^2} dx$.
 - (g) Define point of inflexion.
 - (h) For a pedal curve $p = r \sin \phi$, write the formula for radius of curvature.

- (i) Write down the reduction formula for $\int \tan^n x \, dx$
- (j) What is a cusp?
- **2.** Answer the following questions: $2 \times 5 = 10$
 - (a) Find nth derivative of $\frac{1}{a^2 x^2}$.
 - (b) If $u = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, find $\frac{\partial^2 u}{\partial x \partial y}$
 - (c) The tangent of the curve $y^2 = 4a\left\{x + \sin\frac{x}{a}\right\}$ at (x_1, y_1) is parallel to x-axis. Show that $\cos(x_1/a) = -1$
 - (d) Evaluate $\int_0^{\pi} x \sin x \cos^2 x \, dx$.
 - (e) Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum.
- 3. Answer the following questions:
 - (a) (i) If $u = e^{xyz}$, show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$
 - (ii) Find the pedal equation of the curve $x^2 + y^2 = 2ax$

2

(b) Derive a reduction formula for $\int \cos^n x \, dx$. 5 8A/390 (Continued)

- 4. Answer either (a) or (b):
 - (a) (i) Tangents are drawn from the origin to the curve $y = \sin x$. Prove that their points of contact lie on

$$x^2y^2 = x^2 - y^2$$
 5

(ii) Evaluate
$$\int \frac{dx}{(1+x)\sqrt{1+2x-x^2}}.$$
 5

(b) (i) Evaluate
$$\int \frac{dx}{3+5\cos x}$$
. 5

(ii) Evaluate
$$\int \sqrt{\frac{x-3}{x-4}} dx$$
.

- 5. Answer the following questions:
 - (a) If $y = [x + \sqrt{1 + x^2}]^m$, find the *n*th derivative of y for x = 0.
 - (b) Find the perimeter of the circle

$$x^2 + y^2 = a^2$$

- 6. Answer either (a) or (b):
 - (a) (i) If $u = x \phi(y/x) + \psi(y/x)$, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} y}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 0$$

5

(ii)	Find	the	volum	e of	the	solid
			by the			
	curve	(a -	$-x)y^2 =$	a^2x	abou	it its
	asymptote.					

5

(b) (i) Find the asymptotes of the curve

$$x^4 - x^2y^2 + x^2 + y^2 - a^2 = 0$$

(ii) Trace the curve $y = x^3$.

5

5

- 7. Answer the following questions:
 - (a) Show that points of inflexion of the curve $y^2 = (x-a)^2(x-b)$ lie on the line 3x+a=4b.

5

(b) Find the surface area of the solid generated by revolving the cardioid $r = a(1 - \cos\theta)$ about the initial line.

5

- 8. Answer either (a) or (b):
 - (a) Derive a reduction formula for $\int \sin^m x \sin nx \, dx$

Hence evaluate

$$\int_0^\pi \sin^m x \sin nx \, dx \qquad 7+3=10$$

(b) What are the double points? Examine the nature of double points of the curve

$$2(x^3+y^3)-3(3x^2+y^2)+12x=4$$
 2+8=10

* * *