2019

MATHEMATICS

(Major)

Paper: 4.1

(Real Analysis)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: 1×10=10
 - (a) Let S be a nonempty subset of R that is bounded below. Then choose the correct option for

$$k = \sup S / \inf S / - \sup S / - \inf S$$
if $k = -\sup \{-s \in S\}$.

(b) If $G_n = (0, 1+1/n)$ for $n \in \mathbb{N}$, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is open.

(Write True or False)

- (c) For $\{x_n\}$ given by the formula $x_n = n/(n+1)$, establish either the convergence or the divergence of the sequence $\{x_n\}$.
- (d) If β a limit point of a sequence $\{S_n\}$, then there exists a subsequence $\{S_{n_k}\}$ of $\{S_n\}$ which converges to β .

(Write True or False)

- (e) If Σu_n is a positive term series such that $\lim_{n\to\infty} (u_n)^{1/n} = L$, then under what condition the Cauchy's root test confirms divergence of Σu_n ?
- (f) The series

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

is not convergent. Give reason.

- (g) Define limit of a function (sequential approach).
- (h) Is the function f, where $f(x) = \frac{x |x|}{x}$ continuous?
- (i) If the function defined on the closed interval [a, b] satisfies the conditions of the mean-value theorem and f'(x) = 0 for all $x \in]a, b[$, then verify that f(x) is constant on [a, b].

(j) A function f is defined on R by $f(x) = \begin{cases} x, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$

Is f'(1) exist? Justify.

- 2. Answer the following questions: 2×5=10
 - (a) Any open interval I = (a, b) is an open set. Why?
 - (b) Show that the series $\sum \frac{1}{n}$ does not converge.
 - (c) Prove that if f is continuous on [a, b] and $f(x) \in [a, b]$ for every $x \in [a, b]$, then there exists a point $c \in [a, b]$ such that f(c) = c.
 - (d) Show that the maximum value of $(\log x)/x$ in $0 < x < \infty$ is 1/e.
 - (e) Show that the function $f(x) = x^{1/3}$, $x \in R$, is not differentiable at x = 0.
- **3.** Answer any four parts: $5\times4=20$
 - (a) Prove that the intersection of any finite number of open sets is open. Does this result hold for arbitrary family of open sets? Justify it.

A9/963

- (b) If $\{a_n\}$ and $\{b_n\}$ be two sequences such that $\lim a_n = a$ and $\lim b_n = b$, then prove that $\lim (a_n b_n) = ab$.
- (c) Prove that a positive term series $\sum u_n$, where $u_n = \frac{1}{n^p}$, is convergent if p > 1.
- (d) Test for convergence of the series $\sum \frac{(n!)}{(2n)!} x^n, \ x > 0$
- (e) Prove that a function f, which is continuous on a closed interval [a, b], assumes every value between its bounds.
- (f) Expand, if possible, the function $f(x) = \sin x$ in ascending powers of x.
- **4.** Answer either (a) and (b) or (c) and (d): $5 \times 2 = 10$
 - (a) State and prove Bolzano-Weierstrass theorem for sets. 1+4=5
 - (b) Show that the sequence $\{a_n\}$, where $a_n = \left\{\frac{1}{\sqrt{(n^2+1)}} + \frac{1}{\sqrt{(n^2+2)}} + \dots + \frac{1}{\sqrt{(n^2+n)}}\right\}$ converges to 1.

- (c) If $\{b_n\}$ be a sequence of positive real numbers such that $b_n = \sqrt{b_{n-1}b_{n-2}}$, n > 2, then show that the sequence converges to $(b_1b_2^2)^{1/3}$.
- (d) Prove that a monotonic increasing bounded above sequence converges to its least upper bound.
- 5. Answer either (a) and (b) or (c) and (d): 5×2=10
 - a) State Abel's test and show that $1 \frac{1}{3 \cdot 3^2} + \frac{1}{5 \cdot 3^2} \frac{1}{7 \cdot 4^2} + \cdots$

is convergent.

1+4=5

5

(b) Test for convergence of the following series whose nth term is given by

$$\frac{1.3.5\cdots(4n-3)}{2.4.6\cdots(4n-2)}\cdot\frac{x^{2n}}{4n}$$

- (c) State the comparison test (limit form) and using it, test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$. 1+4=5
- (d) When an infinite series Σu_n is said to be absolutely convergent? Prove that if Σu_n absolutely convergent, then $\Sigma |u_n|$ is convergent. Does the divergence of $\Sigma |u_n|$ imply the divergence of Σu_n ?

1+3+1=5

State and prove Roll's theorem.

6. Answer any two parts:

5×2=10

(a) Show that the function f defined on R by

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

is discontinuous at every point.

5

(b) Evaluate:

2+3=5

(i)
$$\lim_{x \to 0} \frac{e^{1/x}}{e^{1/x} + 1}$$

- (ii) $\lim_{x\to 0} \frac{1-2\cos x + \cos 2x}{x^2}$
- (c) Prove that a continuous and strictly increasing function f in [a, b] is invertible and the inverse function is continuous in [f(a), f(b)].
- (d) Show that

$$\frac{\tan x}{x} > \frac{x}{\sin x} \text{ for } 0 < x < \frac{\pi}{2}$$

7. Answer any two parts:

5×2=10

5

(a) If f is derivable at c and $f(c) \neq 0$, then prove that the function $\frac{1}{f}$ is also derivable thereat, and then obtain the result

$$\left(\frac{1}{f}\right)'(c) = -\frac{f'(c)}{\{f(c)\}^2}$$
 5

1+4=5

(c) If c is an interior point of the domain of a function f and f'(c) = 0, then show that the function has a maxima or a minima at c, according as f''(c) is negative or positive.

5

5

(d) Use Taylor's theorem with n=2 to approximate $\sqrt[3]{1+x}$, x>-1.

+++