2019

STATISTICS

(Major)

Paper: 3.2

(Distribution—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Answer the following as directed: $1 \times 7 = 7$
 - (a) If X is a Bernoulli random variable, then find moment-generating function.
 - (b) All cumulants of the Poisson distribution are equal.

(State True or False)

- (c) State the relationship between mean and variance of geometric distribution.
- (d) Under what conditions, beta distribution tends to uniform distribution?
- (e) The ratio of two independent gamma variates is a beta variate of 2nd kind.

 (State True or False)

- (f) If $X \sim \exp(\theta)$, then for what value of θ the mean and variance are equal?
- (g) State the relationship between hypergeometric distribution and binomial distribution.
- 2. Answer the following questions: 2×4=8
 - (a) Obtain the moment-generating function of negative binomial distribution and hence find the mean of this distribution.
 - (b) Obtain the probability-generating function of geometric distribution.
 - (c) Obtain the characteristic function of the standard normal variate.
 - (d) Let X_1, X_2, \cdots, X_n be i.i.d. one-parameter exponential variates with mean $\frac{1}{\lambda}$ of each X_i , $i=1,2,\ldots n$. Then show that the sum $S=\sum_{i=1}^n X_i$ follows two-parameter gamma variate with parameters λ and n.
- 3. Answer any three of the following: $5\times3=15$
 - (a) If X and Y are independent Poisson variates, then show that the conditional distribution of X given X + Y is binomial.

- (b) Let X be a non-negative integer valued random variable satisfying $P(X > i + j | X > i) = P(X \ge j)$ for any two positive integers i and j. Then show that X must have a geometric distribution.
- (c) Show that for the normal curve maximum probability occurs at the mean of the distribution.
- (d) When is a variable said to follow exponential distribution? What are the properties of exponential distribution?
- (e) Give the outline of lognormal distribution and give its uses.
- 4. Answer any three of the following: 10×3=30
 - (a) If X is a Poisson variate with parameter λ , then prove that

$$\mu_{r+1} = \lambda \left(r \mu_{r-1} + \frac{d\mu_r}{d\lambda} \right)$$

where μ_r is the rth moment about mean λ . Hence obtain the skewness and kurtosis of Poisson distribution.

(b) (i) Elucidate geometric distribution and give its properties.

10

(ii) Show that any linear combination of n independent normal variates is also a normal variate.	5
(c) (i) For a beta (m, n) distribution	
$f(x) = \frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} x^{m-1} (1-x)^{n-1}; 0 < x < 1$	
Verify that the harmonic mean is less than the arithmetic mean.	6
(ii) Write down the p.d.f. of the three- parameter Weibull distribution.	
Assuming the location parameter to	4
be zero, derive mean and variance.	4
(d) (i) Obtain the characteristic function of standard Cauchy distribution.	5
(ii) Show that if the random variables X and Y are i.i.d. binomial variables with parameters (n, p) and (m, p) respectively, then the conditional distribution of $\frac{X}{X+Y}$ is hyper-	
geometric. $\frac{1}{X+Y}$ is hyper-	5
(e) (i) State the applications of gamma distribution.	3
(ii) Find the mean and variance of	
hypergeometric distribution.	7