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Preface

My aim was to produce a statistics book with two characteristics: to assume that
the reader is using a computer to analyse data and to contain absolutely no
equations.

This is a handbook for biologists who want to process their data through a
statistical package on the computer, to select the most appropriate methods and
extract the important information from the, often confusing, output that is pro-
duced. It is aimed, primarily, at undergraduates and masters students in the
biological sciences who have to use statistics in practical classes and projects.
Such users of statistics don’t have to understand exactly how the test works or
how to do the actual calculations. These things are not covered in this book as
there are more than enough books providing such information already. What is
important is that the right statistical test is used and the right inferences made
from the output of the test. An extensive key to statistical tests is included for
the former and the bulk of the book is made up of descriptions of how to carry
out the tests to address the latter.

In several years of teaching statistics to biology students it is clear to me that
most students don’t really care how or why the test works. They do care a great
deal that they are using an appropriate test and interpreting the results properly.
I think that this is a fair aim to have for occasional users of statistics. Of course,
anyone going on to use statistics frequently should become familiar with the
way that calculations manipulate the data to produce the output as this will
give a better understanding of the test.

If this book has a message it is this: think about the statistics before you collect
the data! So many times I have seen rather distraught students unable to analyse
their precious data because the experimental design they used was inappropri-
ate. On such occasions I try to find a compromise test that will make the best of
a bad job but this often leads to a weaker conclusion than might have been
possible if more forethought had been applied from the outset. There is no
doubt that if experiments or sampling strategies are designed with the statistics
in mind better science will result.

Statistics are often seen by students as the ‘thing you must do to data at the
end’. Please try to avoid falling into this trap yourself Thought experiments
producing dummy data are a good way to try out experimental designs and are
much less labour-intensive than real ones!
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Although there are almost no equations in this book I'm afraid there was no
way to totally avoid statistical jargon. To ease the pain somewhat, an extensive
Glossary and key to symbols are included. So when you are navigating your way
through the key to choosing a test you should look up any words you don’t
understand.

In this book I have given extensive instructions for the use of four commonly
encountered software packages: SPSS, R, Excel and MINITAB. However, the
key to choosing a statistical test is not at all package-specific, so if you use a
software package other than the four I focus on or if you are using a calculator
you will still be able to get a good deal out of this book.

If every sample gave the same result there would be no need for statistics.
However, all aspects of biology are filled with variation. It is statistics that can
be used to penetrate the haze of experimental error and the inherent variability
of the natural world to reach the underlying causes and processes at work. So,
try not to hate statistics, they are merely a tool that, when used wisely and
properly, can make the life of a biologist much simpler and give conclusions a
sound basis.

The third edition

In the 8 years since I wrote the second edition of this book there have, of course,
been several new versions of the software produced. I have received many
comments about the previous editions and I am grateful for the many sugges-
tions on how to improve the text and coverage. Requests to add further statisti-
cal packages have been the most common suggestion for change. There was
surprisingly little consensus on the packages to add for the second edition, but
since 2000 the freely available, and very powerful, package R has become
extremely widely used so I have added that to the mix this time.

How to use this book

This is definitely not a book that should be read from cover to cover. It is a book
to refer to when you need assistance with statistical analysis, either when choos-
ing an appropriate test or when carrying it out. The basics of statistical analysis
and experimental design are covered briefly but those sections are intended
mostly as a revision aid, or to outline of some of the more important concepts.
The reviews of other statistics books may help you choose those that are most
appropriate for you if you want or need more details.

The heart of the book is the key. The rest of the book hinges on the key,
explaining how to carry out the tests, giving assistance with the statistical terms
in the Glossary or giving tips on the use of computers and packages.
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Packages used

MINITAB® version 15, MINITAB Inc.

SPSS® versions 16 and 17, SPSS Inc.

Excel™ version 2007 and 2008 for Mac, Microsoft Corporation
Running on:

Windows® versions XP, 2000, 7 and Vista, Microsoft Corporation
Mac OS 10, Apple Inc.

Example data

In the spirit of dummy data collection, all example data used throughout this
book have been fabricated. Any similarity to data alive or dead is purely
coincidental.
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Eight steps to

successful data
analysis

This is a very simple sequence that, if you follow it, will integrate the statistics
you use into the process of scientific investigation. As I make clear here, statistical
tests should be considered very early in the process and not left until the end.
1 Decide what you are interested in.
2 Formulate a hypothesis or several hypotheses (see Chapters 2 and 3 for
guidance).
3 Design the experiment, manipulation or sampling routine that will allow you
to test the hypotheses (see Chapters 2 and 4 for some hints on how to go about
this).
4 Collect dummy data (i.e. make up approximate values based on what you
expect to obtain). The collection of ‘dummy data’ may seem strange but it will
convert the proposed experimental design or sampling routine into something
more tangible. The process can often expose flaws or weaknesses in the data-
collection routine that will save a huge amount of time and effort.
5 Use the key presented in Chapter 3 to guide you towards the appropriate test
or tests.
6 Carry out the test(s) using the dummy data. (Chapters 6-9 will show you
how to input the data, use the statistical packages and interpret the output.)
7 If there are problems go back to step 3 (or 2); otherwise, proceed to the col-
lection of real data.
8 Carry out the test(s) using the real data. Report the findings and/or return to
step 2.
I implore you to use this sequence. I have seen countless students who have
spent a long time and a lot of effort collecting data only to find that the experi-
mental or sampling design was not quite right. The test they are forced to use is
much less powerful than one they could have used with only a slight change in
the experimental design. This sort experience tends to turn people away from
statistics and become ‘scared’ of them. This is a great shame as statistics are a
hugely useful and vital tool in science.

The rest of the book follows this eight-step process but you should use it for
guidance and advice when you become unsure of what to do.

Choosing and Using Statistics: A Biologist's Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.



The basics

The aim of this chapter is to introduce, in rather broad terms, some of the recur-
ring concepts of data collection and analysis. Everything introduced here is cov-
ered at greater length in later chapters and certainly in the many statistics textbooks
that aim to introduce statistical theory and experimental design to scientists.

The key to statistical tests in the next chapter assumes that you are familiar
with most of the basic concepts introduced here.

Observations

These are the raw material of statistics and can include anything recorded as
part of an investigation. They can be on any scale from a simple ‘raining or not
raining’ dichotomy to a very sophisticated and precise analysis of nutrient con-
centrations. The type of observations recorded will have a great bearing on the
type of statistical tests that are appropriate.

Observations can be simply divided into three types: categorical where the
observations can be in a limited number of categories which have no obvious
scale (e.g. ‘oak’, ‘ash’, ‘elm"); discrete where there is a real scale but not all values
are possible (e.g. ‘number of eggs in a nest’ or ‘number of species in a sample’)
and continuous where any value is theoretically possible, only restricted by the
measuring device (e.g. lengths, concentrations).

Different types of observations are considered in more detail in Chapter 5.

Hypothesis testing

The cornerstone of scientific analysis is hypothesis testing. The concept is rather
simple: almost every time a statistical test is carried out it is testing the probabil-
ity that a hypothesis is correct. If the probability is small then the hypothesis is
deemed to be untrue and it is rejected in favour of an alternative. This is done
in what seems to be a rather upside down way as the test is always of what is

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.



The basics | 3

called the null hypothesis rather than the more interesting hypothesis. The null
hypothesis is the hypothesis that nothing is going on (it is often labelled as H,).
For example, if the weights of bulbs for two cultivars of daffodils were being
investigated, the null hypothesis would be that there is no weight difference
between cultivars: ‘the weights of the two groups of bulbs are the same’ or,
more correctly, ‘the two groups of bulbs are samples from a larger population
with the same distribution’. A statistical test is carried out to find out how likely
that null hypothesis is to be true. If we decide to reject the null hypothesis we
must accept the alternative, more interesting, hypothesis (H,) that: ‘the weights
of bulbs for the two cultivars are different’ or, more correctly, that ‘the groups
are samples from populations with different distributions’.

P-values

The P-value is the bottom line of most statistical tests. (Incidentally, you may
come across it written in upper or lower case, italic or not: e.g. P value, P-value,
p value or p-value.) It is the probability of seeing data this extreme or more
extreme if the null hypothesis is true. So if a P-value is given as 0.06 it indicates
that you have a 6% chance of seeing data like this if the null hypothesis is true.
In biology it is usual to take a value of 0.05 or 5% as the critical level for the
rejection of a hypothesis. This means that providing a hypothesis has a less than
one in 20 chance of being true we reject it. As it is the null hypothesis that is
nearly always being tested we are always looking for low P-values to reject this
hypothesis and accept the more interesting alternative hypothesis.

Clearly the smaller the P-value the more confident we can be in the conclu-
sions drawn from it. A P-value of 0.0001 indicates that if the null hypothesis is
true the chance of seeing data as extreme or more extreme than that being tested
is one in 10000. This is much more convincing than a marginal P = 0.049.

P-values and the types of errors that are implicitly accepted by their use are
considered further in Chapter 4.

Sampling

Observations have to be collected in some way. This process of data acquisition is
called sampling. Although there are almost as many different methods that can
be used for sampling as there are possible things to sample, there are some general
rules. One of the most obvious is that a large number of observations is usually
better than a small number. Balanced sampling is also important (i.e. when com-
paring two groups take the same number of observations from each group).
Most statistical tests assume that samples are taken at random. This sounds
easy but is actually quite difficult to achieve. For example, if you are sampling
beetles from pit-fall traps the sample may seem totally random but in fact is
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quite biased towards those species that move around the most and fail to avoid
the traps. Another common bias is to chose a point at random and then measure
the nearest individual to that point, assuming that this will produce a random
sample. It will not be random at all as isolated individuals and those at the edges
of clumps are more likely to be selected than those in the middle. There are
methods available to reduce problems associated with non-random sampling
but the first step is to be aware of the problem.

A further assumption of sampling is that individuals are either only measured
once or they are all sampled on several occasions. This assumption is often vio-
lated if, for example, the same site is visited on two occasions and the same
individuals or clones are inadvertently remeasured.

The sets of observations collected are called variables. A variable can be almost
anything it is possible to record as long as different individuals can be assigned
different values.

Some of the problems of sampling are considered in Chapter 4.

Experiments

In biology many investigations use experiments of some sort. An experiment
occurs when anything is altered or controlled by the investigator. For example,
an investigation into the effect of fertilizer on plant growth will use a control
plot (or several control plots) where there is no fertilizer added and then one or
more plots where fertilizer has been added at known concentrations set by the
investigators. In this way the effect of fertilizer can be determined by compari-
son of the different concentrations of fertilizer. The condition being controlled
(e.g. fertilizer) is usually called a factor and the different levels used called treat-
ments or factor levels (e.g. concentrations of fertilizer). The design of this exper-
iment will be determined by the hypothesis or hypotheses being investigated. If
the effect of the fertilizer on a particular plant is of interest then perhaps a range
of different soil types might be used with and without fertilizer. If the effect on
plants in general is of interest then an experiment using a variety of plants is
required, either in isolation or together. If the optimum fertilizer treatment is
required then a range of concentrations will be applied and a cost-benefit analy-
sis carried out.

More details and strategies for experimental design are considered in Chapter 4.

Statistics

In general, statistics are the results of manipulation of observations to produce
a single, or small number of results. There are various categories of statistics
depending on the type of summary required. Here I divide statistics into four
categories.
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Descriptive statistics

The simplest statistics are summaries of data sets. Simple summary statistics are
easy to understand but should not be overlooked. These are not usually consid-
ered to be statistics but are in fact extremely useful for data investigation. The
most widely used are measures of the ‘location’ of a set of numbers such as the
mean or median. Then there are measures of the ‘spread’ of the data, such as the
standard deviation. Choice of appropriate descriptive statistic and the best way
of displaying the results are considered in Chapters 5 and 6.

Tests of difference

A familiar question in any field of investigation is going to be something like ‘is
this group different from that group?’. A question of this kind can then be
turned into a null hypothesis with a form: ‘this group and that group are not
different’. To answer this question, and test the null hypothesis, a statistical test
of difference is required. There are many tests that all seem to answer the same
type of question but each is appropriate when certain types of data are being
considered. After the simple comparison of two groups there are extensions to
comparisons of more than two groups and then to tests involving more than one
way of dividing the individuals into groups. For example, individuals could be
assigned to two groups by sex and also into groups depending on whether they
had been given a drug or not. This could be considered as four groups or as what
is known as a factorial test, where there are two factors, ‘sex’ and ‘drug’, with all
combinations of the levels of the two factors being measured in some way.
Factorial designs can become very complicated but they are very powerful and
can expose subtleties in the way the factors interact that can never be found
though investigation of the data using one factor at a time.

Tests of difference can also be used to compare variables with known distri-
butions. These can be statistical distributions or derived from theory. Chapter 7
considers tests of difference in detail.

Tests of relationships

Another familiar question that arises in scientific investigation is in the form ‘is
A associated with B?’. For example, ‘is fat intake related to blood pressure?’.
This type of question should then be turned into a null hypothesis that ‘A is not
associated with B’ and then tested using one of a variety of statistical tests. As
with tests of difference there are a many tests that seem to address the same
type of problem, but again each is appropriate for different types of data.

Test of relationships fall into two groups, called correlation and regression,
depending on the type of hypothesis being investigated. Correlation is a test to
measure the degree to which one set of data varies with another: it does not
imply that there is any cause-and-effect relationship. Regression is used to fit a
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relationship between two variables such that one can be predicted from the
other. This does imply a cause-and-effect relationship or at least an implication
that one of the variables is a ‘response’ in some way. So in the investigation of
fat intake and blood pressure a strong positive correlation between the two
shows an association but does not show cause and effect. If a regression is used
and there is a significant positive regression line, this would imply that blood
pressure can be predicted using fat intake or, if the regression uses the fat intake
as the ‘response’, that fat intake can be predicted from blood pressure.

There are many additional techniques that can be employed to consider the
relationships between more than two sets of data. Tests of relationships are

described in Chapter 8.

Tests for data investigation

A whole range of tests is available to help investigators explore large data sets.
Unlike the tests considered above, data investigation need not have a hypothesis
for testing. For example, in a study of the morphology of fish there may be many
fin measures from a range of species and sites that offer far too many potential
hypotheses for investigation. In this case the application of a multivariate tech-
nique may show up relationships between individuals, help assign unknown
specimens to categories or just suggest which hypotheses are worth further
consideration.
A few of the many different techniques available are considered in Chapter 9.



Choosing a test:

a key

I hope that you are not reading this chapter with your data already collected
and the experiment or sampling programme ‘finished’. If you have finished col-
lecting your data I strongly advise you to approach your next experiment or
survey in a different way. As you will see below, I hope that you will be using
this key before you start collecting real data.

Remember: eight steps to successful data analysis

Decide what you are interested in.

Formulate a hypothesis or hypotheses.

Design the experiment or sampling routine.

Collect dummy data. Make up approximate values based on what you expect.
Use the key here to decide on the appropriate test or tests.

Carry out the test(s) using the dummy data.

If there are problems go back to step 3 (or 2), otherwise collect the real data.
Carry out the test(s) using the real data.

ONSOUTA WN =

The art of choosing a test

It may be a surprising revelation, but choosing a statistical test is not an exact
science. There is nearly always scope for considerable choice and many decisions
will be made based on personal judgements, experience with similar problems
or just a simple hunch. There are many circumstances under which there are
several ways that the data could be analysed and yet each of the possible tests
could be justified.

A common tendency is to force the data from your experiment into a test you
are familiar with even if it is not the best method. Look around for different tests
that may be more appropriate to the hypothesis you are testing. In this way you
will expand your statistical repertoire and add power to your future experiments.

Choosing and Using Statistics: A Biologist's Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.



8 Chapter 3

A key to assist in your choice of statistical test

Starting at step 1 in the list above move through the key following the path that
best describes your data. If you are unsure about any of the terms used then
consult the glossary or the relevant sections of the next two chapters. This is not
a true dichotomous key and at several points there are more than two routes or
end points.

There may be several end points appropriate to your data that result from
this key. For example you may wish to know the correct display method for the
data and then the correct measure of dispersion to use. If this is the case, go
through the key twice.

All the tests and techniques mentioned in the key are described in later
chapters.

Italics indicate instructions about what you should do.

Numbers in brackets indicate that the point in the key is something of a com-
promise destination.

There are several points where rather arbitrary numbers are used to deter-
mine which path you should take. For example, I use 30 different observations
as the arbitrary level at which to split continuous and discontinuous data. If
your data set falls close to this level you should not feel constrained to take one
path if you feel more comfortable with the other.

1 Testing a clear hypothesis and associated null hypothesis (e.g. H = 25
blood glucose level is related to age and H = blood glucose is not
related to age).
Not testing any hypothesis but simply want to present, summarize 2
or explore data.

2 Methods to summarize and display the data required. 3
Data exploration for the purpose of understanding and getting a 60
feel for the data or perhaps to help with formulation of hypotheses.

For example, you may wish to find possible groups within the data
(e.g. 10 morphological variables have been taken from a large
number of carabid beetles; the multivariate test may establish
whether they can be divided into separate taxa).

3 There is only one collected variable under consideration (e.g. the 4
only variable measured is brain volume although it may have been
measured from several different populations).

There is more than one measured variable (e.g. you have measured the 24
number of algaeper millilitre and the water pH in the same sample).

4 The data are discrete; there are fewer than 30 different values (e.g. 5
number of species in a sample).
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The data are continuous; there are more than 29 different values
(e.g. bee wing length measured to the nearest 0.01 mm).
(Note: the distinction between the above is rather arbitrary.)

5 There is only one group or sample (e.g. all measurements taken
from the same river on the same day).
There is more than one group or sample (e.g. you have measured
the number of antenna segments in a species of beetle and have
divided the sample according to sex to give two groups).

6 A graphical representation of the data is required.
A numerical summary or description of the data required.

7 A display of the whole distribution is required.
Crude display of position and spread of data is required: use a box
and whisker display to show medians, range and inter-quartile range,

page 49 (also known as a box plot).

8 Values have real meaning (e.g. number of mammals caught per night).
Values are arbitrary labels that have no real sequence (e.g. different
vegetation-type classifications in an area of forest).

9 There are fewer than 10 different values or classifications: draw a
pie chart, page 52. Ensure that each segment is labelled clearly and
that adjacent shading patterns are as distinct as possible. Avoid using
three-dimensional or shadow effects, dark shading or colour. Do not
add the proportion in figures to the ‘piece’ of the pie as this information
is redundant.

There are 10 or more different values or classifications: amalgamate
values until there are fewer than 10 or divide the sample to produce
two sets each with fewer than 10 values. Ten is a level above which it
is difficult to distinguish different sections of the pie or to have
sufficiently distinct shading patterns.

10 There are more than 20 different values: amalgamate values to
produce around 12 classes (almost certainly done automatically by
your package) and draw a histogram, page 51. Put classes on the
x-axis, frequency of occurrence (number of times the value occurs) on
the y-axis, with no gaps between bars. Do not use three-dimensional or
shadow effects.

There are 20 or fewer different values: draw a bar chart, page 51.
Each value should be represented on the x-axis. If there are few classes,
extend the range to include values not in the data set at either side,
frequency of occurrence (number of times the value occurs) on y-axis.
Gaps should appear between bars, unless the variable is clearly
supposed to be continuous; do not use three-dimensional or shadow
effects.
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You want a measure of position (mean is the one used most
commonly).

You want a measure of dispersion or spread (standard deviation
and confidence intervals are the most commonly used).

You want a measure of symmetry or shape of the distribution.
(Note: you will probably want to go for at least one measure of
position and another of spread in most cases.)

Variable is definitely discrete, usually restricted to integer values
smaller than 30 (e.g. number of eggs in a clutch): calculate the
median, page 53.

Variable should be continuous but has only a few different values
due to accuracy of measurement (e.g. bone length measured to the
nearest centimetre): calculate the mean, page 53.

If you are particularly interested in the most commonly occurring
response: calculate the mode, page 53, in addition to either the mean
or median.

A very rough measure of spread is required: calculate the range, page
55 (note that this measure is very biased by sample size and is rarely
a useful statistic).

You are particularly interested in the highest and/or lowest values:
calculate the range, page 55.

Variable should be continuous but has only a few values due to
accuracy of measurement: calculate the standard deviation, page 55.
Variable is discrete or has an unusual distribution: calculate the
interquartile range, page 55.

Variable should be continuous but has only a few values due to
accuracy of measurement: calculate the skew (g,), page 57.
Observations are discrete or you have already calculated the
interquartile range and the median: the relative size of the
interquartile range above and below the median provides a measure of
the symmetry of the data.

You have not established the appropriate technique for a single
sample: go back to 6 to find the appropriate techniques for each group.
You should find that the same is correct for each sample or group.

The samples can be displayed separately: go back to 7 and choose the
appropriate style. So that direct comparisons can be made, be sure to
use the same scales (both x-axis and y-axis) for each graph. Be
warned that packages will often adjust scales for you. If this happens
you must force the scales to be the same.

The samples are to be displayed together on the same graph: use a
chart with a box plot for each sample and the x-axis representing the
sample number, page 62. Ensure that there is a clear space between
each box plot.

12
13

14

(6)
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There is only a data set from one group or sample.

The data have been collected from more than one group or sample
(e.g. you have measured the mass of each individual of a single
species of vole from one sample and have divided the sample
according to sex).

A graphical representation of the data is required.
A numerical summary or descriptive statistics are required.

A display of the whole distribution is required: group to produce
around 12-20 classes and draw a histogram, page 51 (probably done
automatically by your package). Put classes on the x-axis, frequency of
occurrence (number of times the value occurs within the class) on the
y-axis, with no gaps between bars and no three-dimensional or shadow
effects. Even-sized classes are much easier for a reader to interpret.
Data with an unusual distribution (e.g. there are some extremely high
values well away from most of the observations) may require
transformation before the histogram is attempted.

A crude display of position and spread of the data is required: the
‘error bar’ type of display is unusual for a single sample but common
for several samples. There is a symbol representing the mean and a
vertical line representing range of either the 95% confidence interval or
the standard deviation, page 63.

You want a measure of position (mean is the most common).

You want a measure of dispersion (spread).

You want a measure of symmetry or shape of the distribution.

You wish to determine whether the data are normally distributed:
carry out a Kolmogorov-Smirnov test, page 86, an Anderson-Darling
test, page 89, a Shapiro-Wilk test, page 90, or a chi-square goodness of
fit, page 75.

(Note: you probably require one of each of the above for a full
summary of the data.)

Unless the variable is definitely discrete or is known to have an odd
distribution (e.g. not symmetrical): calculate the mean, page 53.

If the data are known to be discrete or the data set is to be
compared with other, discrete data with fewer possible values:
calculate the median, page 53.

If you are particularly interested in the most commonly occurring
value: calculate the mode, page 53, in addition to the mean or median.

If the data are continuous and approximately normally distributed
and you require an estimate of the spread of data: calculate the
standard deviation (SD), page 55. (Note: standard deviation is the
square root of variance and is measured in the same units as the
original data.)

1"
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If you have previously calculated the mean and require an estimate
of the range of possible values for the mean: calculate 95% confidence
limits for the mean, page 56 (a.k.a. 95% confidence interval or 95% CI).
A very rough measure of spread required: calculate the range, page 55.
(Note that this measure is very biased by sample size and is rarely a
useful statistic in large samples.)

If you have a special interest in the highest and or lowest values in
the sample: calculate the range, page 55.

If the data are known to be discrete or are to be compared with
other, discrete, data or if you have previously calculated the
median: calculate the interquartile range, page 55.

(Note: many people use standard error (SE) as a measure of spread.
I think that the main reason for this is that it is smaller than either
SD or 95% CI rather than for any statistical reason. Do not use SE
for this purpose unless you are making a comparison to previously

calculated SEs.)

If the data are continuous and normally distributed and you
require an unbiased estimate of the symmetry of the data: calculate
the skewness/asymmetry of the data (g,), page 57. Skew is only worth
calculating in samples with more than 30 observations.

If the data are continuous and normally distributed, you have
calculated skewness and you require an estimate of the ‘shape’ of
the distribution of the data: calculate the kurtosis (g,), page 57. (This
is rarely required as a graphical representation will give a better
understanding of the shape of the data. Kurtosis is only really worth
calculating in samples with more than 100 observations.)

If you have already calculated the interquartile range and the
median: re-examine the interquartile range. The relative size of the
interquartile range above and below the median provides a measure of
the symmetry of the data.

You have not established the appropriate technique for a single
sample: go back to 16 to find the appropriate techniques for each of the
groups. You should find the same is appropriate for each sample or group.
The samples can be displayed separately: go back to 17 and choose
the appropriate style. So that direct comparisons can be made, be sure
to use the same scales (both x-axis and y-axis) for each graph. Be
warned that statistical packages will often adjust scales for you.

The samples are to be displayed together on the same graph: use a
chart with an ‘error bar’ (showing the mean and a measure of spread)
for each sample and the x-axis representing the sample number/site.
Do not join the means unless intermediate samples would be possible
(i.e. don’t join means from samples divided by sex or species but do
join those representing temperature, if the intervals between different
sample temperatures are even).

(16)
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If each variable is to be considered separately: go back to 4 and
consider each variable in turn.

Two variables only: a two-dimensional scatterplot can be drawn,
page 64. The choice of variable for x- and y-axes is free but if you
suspect a possibility of ‘cause’ and ‘effect’ the ‘cause’ should always be
on the x-axis. Do not draw a line of best fit even if it is offered by the
package unless the situation is appropriate and you have carried out
a regression analysis.

Three variables: a three-dimensional scatterplot can be drawn,

page 68. It is very difficult to represent three dimensions on a
two-dimensional sheet of paper or computer screen. You must drop
spikes to the ‘floor’ or ‘origin’ of the graph, otherwise it is impossible to
visualize the spread in the third dimension. It may be better to use a
series of two-dimensional scatterplots instead.

More than three variables: use a series of two-, or three-, dimensional
scatterplots, page 64.

(Note: the distinction here will be slightly fuzzy in some cases, but
essentially there are two basic types of test.)

The hypothesis is investigating differences and the null hypothesis
is that there is no difference between groups or between data and a
particular distribution [e.g. H, (alternative hypothesis) = white-eye
and carmine-eye flies have different mean development times, H
(null hypothesis) = white-eye and carmine-eye flies have the same
mean development time].

The hypothesis is investigating a relationship and the null
hypothesis is that there is no relationship [e.g. H, (alternative
hypothesis) = plant size is related to available phosphorous in the
soil, H; (null hypothesis) = plant size is not related to amount of
available phosphorus].

Data are collected as individual observations (e.g. height in
centimetres).

Data are in the form of frequencies (e.g. when carrying out a plant
cross and scoring the number of offspring of each type).

There are only two possibilities (e.g. white or pink).

There are more than two possibilities: carry out a G-test, if your
package supports it, page 72; otherwise use a chi-square goodness of fit,
page 75.

There are more than about eight possibilities: a Kolmogorov—
Smirnov test, page 86, may be more convenient than the chi-square

goodness of fit, page 75.

There are more than 200 observations in the sample: carry out a
G-test, page 72, if your package supports it; otherwise use a chi-square
goodness of fit, page 75.

(4)
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There are 25-200 observations: carry out a G-test if your package
supports it, page 72; otherwise use a chi-square goodness of fit, page
75, but add a ‘continuity correction’ by adding 0.5 to the lower
frequencies and subtracting 0.5 from the higher. This is very
conservative and may result in a non-significant result when a
marginally significant one is present (type I error). If your package
supports the ‘Williams’ correction’ then use that instead of the
‘continuity correction’.

There are fewer than 25 observations: there are four possible
solutions (listed in order of preference): use a binomial test if
supported by your package; carry one out by hand if you are able; get
a bigger sample; pretend you have 25 observations and use the
instructions above.

There is only one way of classifying the data (e.g. grouped by
species).

There is more than one way of classifying the data (e.g. grouped by
species and collection site).

There are only two groups (e.g. male and female or before and after).
There are more than two groups (e.g. samples from four different
fields).

(Note: the null hypothesis is that all groups have the same mean so
if any two groups have different means you have to reject this null
hypothesis.)

There are more than two groups and several measured variables
[e.g. individuals divided by species (a grouping variable) and the
measured variables are various anatomical characters or dimensions
such as leaf length, stem thickness and petal length]: canonical
variate analysis, page 251.

Two samples are ‘paired’. This means that the same individual,
location or quadrat has been measured twice. This is the ‘before-
and-after’ design (e.g. river nitrate level is measured at the same
point before and after a storm).

Two samples are independent. There are different groups of
individuals in the two samples.

The data are normally distributed, there are at least 30 possible
values and variances are, at least approximately, homogeneous:
carry out a paired t-test, page 92. To test for normal distribution use a
Kolmogorov-Smirnov test, page 86, an Anderson—Darling test, page
89, a Shapiro-Wilk test, page 90, or a chi-square goodness of fit, page
75. A test for homogeneity of variance is often an option within the
t-test in the package (e.g. a Levene test or Bartlett’s test).
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A two-way ANOVA test is a potential alternative here but is more
difficult to carry out than the paired t-test in most statistical packages,
page 163 (use one factor of the ANOVA to represent ‘before/after’ and
the other to represent the different individuals).

Above does not, or might not, apply.

Data have more than 20 possible values: carry out a Wilcoxon signed
ranks test, page 96.

Data have 20 or fewer possible values (e.g. questionnaire

results with a question of ‘how do you feel’ asked before and

after exercise): carry out a sign test if supported by your package

(this is a very conservative but fairly low-power test), page 99.

If this is not available in the package carry out a Wilcoxon signed
ranks test, page 96.

The data set is normally distributed, there are at least 30
possible values and variances are, at least approximately,
homogeneous: carry out a one-way ANOVA with one factor having
two levels (one for each group), page 111, or use a t-test, page 103.
To test for normal distribution use Kolmogorov-Smirnov tests,

page 86, Anderson—Darling tests, page 89, a Shapiro-Wilk test,
page 90, or chi-square goodness of fit, page 75. A test for
homogeneity of variance is often an option within the t-test or the
ANOVA in the package (e.g. a Levene test).

The traditional method is to use a t-test for this type of experiment but
it is no better than ANOVA in this circumstance as both tests give an
identical result, although many packages have versions of the t-test
that make an adjustment to the degrees of freedom to account for
violations of the assumptions of the test.

The data set does not, or might not, fulfil the conditions above:
carry out a Mann-Whitney U test, page 119 (sometimes called
Wilcoxon-Mann—Whitney or Wilcoxon two-sample test; not a
Wilcoxon signed ranks test). (The Kruskal-Wallis test is an alternative
but is less powerful.)

Samples are ‘repeated measures’. This means that the same
individual or location is measured through time. This is an
extended ‘before-and-after’ design (e.g. lake turbidity is measured
at the same point each year for several years).

Each sample is independent. There are different groups

of individuals in each samples. [It is important that no

individual is present more than once in the data set, otherwise
problems (of inappropriate replication) reduce the power of the
statistical test.]
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The data for each factor combination are normally distributed,
there are at least 30 possible values and variances are, at least
approximately, homogeneous: carry out a two-way, repeated-
measures ANOVA with one factor having a different level for each
sampling repeat and a second factor having a level for each individual
you are sampling, page 127 (easy if you have only five rivers
measured each year but very tedious to input and difficult to interpret
if you have 50). Be aware that if your package does not support
repeated-measures designs the degrees of freedom in a two-way ANOVA
should be reduced to compensate for the design. To test for normal
distributions you can use Kolmogorov—Smirnov tests, page 86,
Anderson-Darling tests, page 89, a Shapiro-Wilk test, page 90, or a
chi-square goodness of fit, page 75, although in practice it is usual to
use experience to determine whether the data are likely to be normally
distributed. Furthermore, ANOVA is quite robust to small departures
from a normal distribution.

The data set does not conform to the restrictions above and you
only have one observation for each repeat of each sample: carry out
a Friedman test with one factor having a different level for each
sampling repeat event, page 123, (e.g. before, during, after) and one
factor having a different level for each individual (e.g person) you are
sampling

Neither of the above apply. This is difficult! It often results from
poor planning of the experiment: usually it is best to carry out an
ANOVA, page 163, as if the data conformed to the assumptions of
distribution and variances but to treat the resulting P-values with
caution, especially if a P-value is between 0.1 and 0.01.

The data for each factor level are normally distributed, there are at
least 30 possible values and variances are, at least approximately,
homogeneous: carry out a one-way ANOVA with the one factor having
one level for each group, page 129. (Note: the t-test can only be used on
two groups.) If the result is significant then you need to carry out a
post hoc test to determine which factor levels are significantly different
from which. If you are cautious, or unsure, use a Kruskal-Wallis test
instead, page 142.

The data set does not, or might not, fulfil the conditions above:
carry out a Kruskal-Wallis test with one factor having a level for each
group, page 142. (Note: the Mann—-Whitney U test only works for two
groups so is not appropriate here.)

There are only two factors/ways of classifying the data (e.g. strain
and location).

There are three factors/ways of classifying the data (e.g. sex, region
and year).
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There are more than three factors: use the key as if there are three
factors and extrapolate. Multifactorial experimental designs become
increasingly difficult to interpret because there are so many possible
interactions between factors and it is often easiest to leave out factors
that you have proved to have no significant effect, page 182.

There is no replication (i.e. only one value assigned to each
combination of the two factor levels) (e.g. the basal trunk
diameters after 2 years are collected from four strains of apple tree
grown under four watering regimes but with only one tree under
each watering condition).

There is replication (i.e. there are two or more values for each
combination of the two factors).

The data are likely to be normally distributed within each
factor combination (it is impossible to test this when there is
only one observation in each factor combination). Data such as
lengths and concentrations are likely to be appropriate but
judgement is required: carry out a two-way ANOVA, page 152, but
note that you will not be able to look for any interaction between
the two factors.

You are cautious, or have a data set that is unlikely to be normally
distributed: carry out a Friedman test, page 146, although be warned
that this test is quite weak.

Factors are fully independent of each other.

One factor is ‘nested’ within another (e.g. if there are three
branches sampled from each of three trees then branch is said to be
‘nested’ within trees): carry out a nested ANOVA, page 193 (a.k.a.
hierarchical ANova). (Note: there is no non-parametric equivalent (i.e.
one that makes fewer assumptions about the distribution of the data)
of this test.)

The data set is normally distributed within each factor
combination, there are at least 30 possible values and variances are
approximately equal: two-way ANOVA, page 163, measure of the
interaction between the two factors is possible.

The data set is not as above. Versions of a non-parametric, but
low-power, equivalent of a two-way ANOVA making fewer
assumptions about the data (i.e. non-parametric) are a fairly recent
innovation and are not yet appearing in statistical packages. If the
experiment is balanced, or nearly so (i.e. there are the same number
of observations for each combination of factor levels): carry out a
Scheirer-Ray—Hare test, page 175. This will, almost certainly, not be in
your statistical package but can still be carried out with a little
modification of other tests. See the section describing the test for details.

(43)
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(Note: there are no non-parametric tests available from here on so
if the data set does not fit the assumptions of the test you have no
alternatives. ANOVA is quite robust to failure to meet its
assumptions but be aware, especially if results are close to
significance thresholds.)

All factors (ways of grouping the data) are independent of each
other.

At least one factor is nested in another (e.g. in an experiment the
variable is blood sugar level in mice. The factors are litter, female
and food provided. If there are two litters from each of two
females then litter will be ‘nested” within female. Neither litter nor
female will be ‘nested’ within food).

There is only one observation for each combination of factor
levels: carry out a three-way anova, page 183. You will not be able
to calculate the significance of the three-way interaction but you will
be able to do this for the interaction between each combination of
two factors. (Note that any main factors that prove to be non-
significant can be left out of the analysis to reduce the complexity of
the design.)

There is more than one observation for each combination of factor
levels: carry out a three-way ANOVA, interaction terms are possible,

page 184.

One factor is ‘nested’ within another the third is independent (as
in the mouse example in 43): carry out an ANOVA involving both
hierarchical and crossed factors, page 192. This is often difficult to
reach in statistics packages although the design is a common one. If you
only have one observation for each combination of factor levels then an
interaction term cannot be tested (this is because it has to be used as
the residual or error term).

One factor is ‘nested’ within another that is itself ‘nested’ within a
third (e.g. in a water pollution survey the variable is nitrate
concentration. Several samples have been taken from five streams
from each of three river systems and this has been done in two
countries. The factors are stream, river and country. Stream is
nested within river and river nested within country): carry out a
nested or hierarchical ANOVA, page 193.

(The choice you have here is one that is frequently confused: be
careful.)

The purpose of the test is to look for an association between
variables (e.g. is there an association between wing length and
thorax length?). You have not set (controlled) one of the variables
in the experiment. There is no reason to assume a ‘cause-and-
effect’ relationship. This is a test of correlation.

44

45

47



47

48

49

50

51

Choosing a test: a key

One or more of the variables has been set (controlled or selected)
by the experiment or there is a probable ‘cause’ and ‘effect’ or
functional relationship between variables. One of the uses of
regression statistics you are moving to is prediction (e.g. the
experiment is looking at the effect of temperature on heart rate in
Daphnia. You are expecting that heart rate is affected by
temperature but wish to discover the form of the relationship so
that predictions can be made). This is a regression type of test.

Data are in the form of frequencies (e.g. number of white flowers
and orange flowers).

There is a value for each observation. Variables should be paired
etc. (e.g. an observation of two variables, cell count and lung
capacity, from one individual).

There are two variables: if you follow this thread further you will
reach tests that are often awkward to carry out in packages and are
often easier to calculate by hand. If you do calculate them by hand you
may have to look up the significance level using a y? table.

There are more than two variables: simultaneous comparisons of
frequencies for more than two classifications are very difficult to
interpret. It is best to compare them pairwise.

The two variables each have two possible values (e.g. yes/no or
male/female): calculate a phi coefficient for a 2x2 table, page 209, if
your package supports it or you can do it by hand. This test is a special
case of a contingency chi-square calculation, page 199.

At least one of the variables has more than two possible values (e.g.
a crude land classification, forest/scrub/pasture/arable, is compared
to an estimate of the density of a small mammal: common/rare/
absent): calculate a contingency chi-square, page 199, and, if your
statistical package supports it, a Cramér coefficient, page 208.

There are two variables.
There are more than two variables.

Both sets of data are continuous (have more than 30 values) and are
approximately normally distributed (a good way to get a feel for
this is to produce a scatterplot which should produce a circle or
ellipse of points): carry out a Pearson’s product-moment correlation,
page 210 (coefficient is called r). This is the standard correlation
method.

Data are discrete, or not normally distributed, or you are unsure:
use a Spearman’s rank-order correlation coefficient, page 214, or a
Kendall rank-order correlation coefficient, page 218 The marginal
advantage of the former is that it is slightly easier to compare with the
Pearson product-moment correlation while the latter can be used in
partial correlations.
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Data are ranked: use a Kendall rank-order correlation coefficient, page
218. (The Spearman’s correlation is marginally inferior in this case.)

(Note: partial and multiple correlations are difficult to interpret.)
All sets of data are continuous and approximately normally
distributed, and you are interested in the direct level of association
between pairs of variables: use pairwise measures of association using
a Pearson’s correlation, page 210.

All sets of data are continuous and approximately normally
distributed, and you are interested in the overall pattern of
association: use partial correlation, page 237, which looks at the
correlation between two variables while the others are held constant.
(Multiple correlation is a possibility but is rarely supported in
packages. Its disadvantage is in interpretation and its inability to
distinguish positive and negative relationships.)

Above do not apply, or you are cautious: carry out Kendall partial
rank-order correlation coefficient, page 237, a test that finds the
correlation between two variables while a third is held constant. This
may not be supported by your package. If it is not, pairwise testing is
the only alternative.

The dependent variable is discrete, or not normally distributed or
ranked. Be warned that non-parametric regression is required and
that this is rarely available in a statistical package.

The dependent, or ‘effect’, variable is continuous and at least
approximately normally distributed with the same variation in
‘effect’ for any given value of the ‘cause’ variable. [There will often
be a requirement for a transformation of the data. Proportions and
percentages can be transformed using the arcsine transformation
(page 44) or probits. Other distributions may be normalized using
reciprocal transformations or many other possibilities. It is
important that efforts are made to fulfil the requirements for
approximately normal data with equal variance using
transformations. ]

The dependent ‘effect’ variable is a proportion or frequency (e.g.
proportion of population with a disease). The ‘cause’ variable is
measured without error and chosen or set by the experimenter: use
logistic regression, page 230.

There is one independent ‘cause’ variable and one dependent
‘effect’ variable: use Kendall robust line-fit method. If this is not
available consider reframing (usually by simplifying) your hypothesis
somewhat to fit a non-parametric correlation. The only other
alternative is to continue to a parametric test (55), being very cautious
with interpretation of the results.
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All other designs: there is no satisfactory non-parametric test and
certainly nothing in a statistical package yet. Either reframe the
hypothesis or go to 55 and continue with a parametric test. If there are
two ‘cause’ variables and one ‘effect’ then the ‘cause’ variables might be
divided into a small number of categories (e.g. low, medium and high)
and then a Scheirer-Ray—Hare test could be carried out, page 175.

There is one dependent variable (‘effect’) and one independent
variable (‘cause’).

There is one or more dependent variable (‘effect’) and two or more
independent variables.

The data for the dependent variable can be classified into more
than one group (e.g. by species or sex). There is a variable that may
affect the dependent variable: analysis of covariance (ANCOVA) is
required, page 238. This is a technique where the confounding
variable, known as the covariate, is factored out by the analysis
allowing comparison of the groups. Complex designs are possible but
the most common is analogous to a one-way ANOVA with the data (e.g
dry weight) in classes (e.g cultivars) and a variable known to be
confounding factored out as the covariate (e.g degree days).

The independent ‘cause’ variable is measured without error.

There is known to be some measurement error associated with the
independent variable: a model I regression is required, page 235, or
Kendall robust line-fit method, page 230. This is a rarely used
technique and only occasionally appears in statistical packages. It has
the odd property of always overestimating the slope of the relationship
compared to the result from a normal (model I) regression, page 221.

(As the theoretical shape of the relationship is often unknown the
usual strategy here is to try both methods and see which gives the
better fit.)

The relationship is likely to be a straight line or you are not sure of
the form of the relationship: linear regression, page 221 (a.k.a.
model I regression). [Note: in many cases the independent variable can
be transformed to straighten the relationship between cause and effect
(e.g. if the independent variable is size and is right-skewed then a log
transformation will often improve a linear fit).]

The relationship is curvilinear or complex: polynomial regression or
quadratic regression (a special case of polynomial regression), page 235.

There is one dependent ‘effect’ variable and two or more
independent ‘cause’ variables.

There are several ‘cause’ and ‘effect’ variables: use path analysis,
page 243.

(55)
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59 Your primary aim is to find the ‘cause’ variable(s) that are the best
predictors of the ‘effect’ variable: use stepwise regression, page 242.
You want to establish a model using all available ‘cause’ variables:
use multiple regression, page 242.

(The distinction between these two is rather arbitrary.)

60 You have arrived at principal component analysis, discriminant
function analysis and other multivariate techniques for exploring
your data. The usual result of this type of exploration is to identify
simple relationships hidden in the mass of the data. Some of these
tests are described in Chapter 9.

There are several observed variables that are approximately
continuous and you have no preconceived notion about division
into groups: use principal component analysis, page 244.

There are a variety of variables that may be a combination of
‘causes’ and ‘effects’: use path analysis, page 244.

There are two or more sets of observations and one or more
grouping variables: use multivariate analysis of variance (MANOVA),
page 256.

There are two or more sets of observations, one or more grouping
variables and a recorded variable that is known to affect the
observed variables (e.g. temperature): use multivariate analysis of
covariance (MANCOVA), page 259.

There are several observed variables for each individual that are
approximately continuous and individuals have already been
assigned to groups (e.g. species): use canonical variate analysis,
page 251.

There are several observed variables for each individual that are
approximately continuous, individuals have already been assigned
to groups (e.g. species) and the intention is to assign further
individuals to appropriate groups: use discriminant function analysis,
page 251.

There are several observed variables for each individual that are
categorical or nominal, individuals have already been assigned to
groups (e.g. species) and the intention is to assign further
individuals to appropriate groups: use logistic regression, page 230.
There are several observed variables for each individual and you
wish to determine which individuals are most similar to which: use
cluster analysis, page 259.

You have data on the relative abundance of species from various
sites and wish to determine similarities between sites: use cluster

analysis, page 259, or TWINSPAN, page 263.



Hypothesis testing,

sampling and
experimental design

This chapter expands on some of the ideas introduced in Chapter 2.

Hypothesis testing

Much of scientific investigation is based on the idea of hypothesis testing. The
idea is that you formalize a hypothesis (H,) into a statement such as ‘male and
female shrimps are different sizes’, collect appropriate data and then use statis-
tics to determine whether the hypothesis is true or not.

However, it is not quite as simple as that. The statistical tests do not give a
simple answer of true or not. First you have to realize that every hypothesis will
have an associated null hypothesis (H;) and most statistical tests use the null
hypothesis as a starting point.

So, for this example, the hypothesis (H,) is ‘male and female shrimps are dif-
ferent sizes” and the associated null hypothesis (H,) is ‘male and female shrimps
are not different sizes’.

What a statistical test determines is the probability that the null hypothesis
is true (called the P-value). If the probability is low then the null hypothesis is
rejected and the original hypothesis accepted.

Acceptable errors

In reality, the null hypothesis is either true or false. Unfortunately, we only
have a sample of all the individuals in a population and the statistical test
only gives an indication of how likely it is that the null hypothesis is true
based on the sample available. There are two ways of making the wrong infer-
ence from the test. These two types of error are usually called type I and type
I errors.

Choosing and Using Statistics: A Biologist's Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Null hypothesis
Accepted Rejected
Null True | Correct Type I error
hypothesis False | Type Il error Correct

In a type I error the null hypothesis is really true (male and female shrimps are
not different sizes) but the statistical test has led you to believe that it is false
(there is a difference in size). This type of error is potentially very dangerous
and could be seen as a ‘false positive’.

In a type II error the null hypothesis is really false (male and females are really
different sizes) but the test has not picked up this difference. Small sample sizes
will often lead to a type II error. This type of error is less dangerous than the
type I but should still be avoided if possible.

The ideal statistical test should have an equal, and hopefully very low, chance
of the two types of errors. A test which increases the chance of getting a type II
error while decreasing the chance of a type I is said to be ‘conservative’ while
one that increases the chance of a type I error is said to be ‘liberal’. Although it
is best to achieve this balance of type I and type II errors, a cautious approach is
to err towards more ‘conservative’ tests.

P-values

Errors are the inevitable consequence of results based on probability. The lower
the probability (P-value) the more confident you can be in the rejection of the
null hypothesis but you can never be totally sure, unless you have measured the
whole population, that you are correct. It is a usual convention in biology to use
a critical P-value of 0.05 (often called alpha, o). This means that the probability
of observing data as extreme as this if the null hypothesis is true is 0.05 (5% or
1 in 20); in other words, it indicates that the null hypothesis is unlikely to be
true. In biological sciences it is convention that whenever a statistical test gives
a result with a P-value less than 0.05 we reject the null hypothesis and accept
the alternative hypothesis.

There is nothing magical about P<0.05, it is just a convention. If you use a
lower critical P-value then the chance of making a type II error is increased. If
you choose a higher critical P-value then you increase the chance of making a
type I error.

It is worth pointing out that if a P-value is less than 0.05 it does not prove that
the null hypothesis is false, it just indicates that it is unlikely to be true. Indeed
statistics can never prove anything, it can only suggest that a hypothesis is very
likely to be true or untrue. It is also worth noting that a P-value above 0.05
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certainly doesn’t prove that the null hypothesis is true: it just indicates that
there is not enough evidence to reject it.

It is conventional to indicate degrees of significance using asterisks in tables,
or sometimes on figures. A single asterisk is usually used for P-values between
0.05 and 0.01, two asterisks for values below 0.01 and then three asterisks for
results below either 0.005 or 0.001. If asterisks are used in this way they should
be explained in a figure or table caption.

One final point about P-values is that when more than one test is used the
critical P-value used should be reduced to retain a critical level of 0.05 across an
experiment. This makes good sense as any experiment including 20 statistical
tests should, on average, generate one significant result even when there is no
biological effect. The two main methods for adjusting P-values to retain the
experiment-wide threshold are discussed in more detail in the section on cor-
relation (page 199).

Sampling

Nearly all statistical tests make a fundamental assumption that sampling of indi-
viduals will be at random from all the individuals that could possibly be sam-
pled. This sounds simple but achieving a random sample is not always easy. In
almost all biological studies it will be impossible to account for every individual
in a population. Therefore it is necessary to examine a subgroup of the total
population and extrapolate from this to the whole population. The process by
which the subgroup of the population is selected is called sampling.

If a population is evenly distributed through a habitat then a single small
sample would be enough to gain a good estimate of whatever it is you are inter-
ested in (e.g. total population size, mean age or weight). However, this is rarely
the case and most populations have distributions that are either random or
clumped. In such populations a single sample is unlikely to produce a good
estimate of population size or mean height or the variance of leaf thickness.

There are a wide variety of sampling strategies in use. It is important to choose
a strategy that is appropriate to the population being investigated. There are
several steps in the development of a sampling strategy, as described below.

Choice of sample unit

A sampling unit may either be defined arbitrarily, such as a quadrat, transect or
pitfall trap, or be defined naturally, such as leaf or individual. Usually, naturally
defined sample units will be obvious but the choice of an arbitrary unit size may
be important. If the unit is a quadrat then there will obviously be a trade-off in
effort between the number of sample units that can be observed and their size,
simply because it takes more time to get information from a large quadrat.
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A sample unit might also be a length of time (e.g. if you are investigating pol-
lination then number of times a flower is visited in a series of time periods of set
length might be your data set).

The size of sample unit will usually remain constant but may sometimes be variable,
especially if the characteristics of a population distribution are being investigated.
Methods using variable sample unit size to investigate distribution pattern are called
quadrat-variance methods. These methods allow an observer to gain an insight into pat-
terns of distribution in space or time by analysing the different characteristics of the
samples (e.g. mean and variance) using different sample units.

Number of sample units

This is nearly always determined by the amount of labour available: the more time
and people that are available the more information can be collected. However, it
is possible to calculate the number of sample units required to produce an accu-
rate estimate of the population size. In general more sample units will be preferred
as the number of sample units increases the accuracy of statistical tests. However,
quantity should not be increased at the expense of quality. Poor-quality data will
have more inherent error and therefore make the statistics less powerful.

If you require general advice on the number of observations to make then
I can only suggest that, as a rule of thumb, you need at least 20 observations for
a sample using a measured variable and many more than that if the variable is a
simple categorical one.

Positioning of sample units to achieve a random sample

An unbiased estimate of a population is only possible if the sample units are
representative of the total population. The easiest way of achieving this is for
each sample unit to contain a random sample of the population under investiga-
tion. If quadrats are being used then their position within the area under inves-
tigation should be chosen using random numbers to generate two co-ordinates
that are then used to position a corner of the quadrat. Although this method of
choosing a position using random numbers often requires an area to be marked
out, it is to be preferred over the quasi-random techniques, such as throwing a
quadrat, that are certain to introduce some involuntary observer bias.

Selecting random individuals in an area for study can be difficult. Imagine a
typical scheme for locating random plants: random coordinates are chosen and the
nearest plant to the random location is selected for study. This apparently makes a
random choice of individual plants, but in reality it introduces bias as isolated
plants are much more likely to be selected than plants in the middle of clumps.
Indeed the only way to really select individuals at random is, rather impractically,
to label and number every individual and then select randomly from that list.
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Random walks are another way to sample at random without requiring the
area to be marked out. The observer walks a number of paces determined by a
random number and then makes an observation or places a quadrat. Then
another random walk is taken before the next observation, and so on. The
advantages of this method are that sampling can be very rapid and that it
requires little preparation. The drawback is that this type of sampling may be
severely biased by the observer.

True random samples are ideal in a perfectly homogeneous habitat, but in a het-
erogeneous habitat they are likely to produce a biased sample with an estimated
variance greater than that of the total population. A simple method used to mini-
mize this problem is to take a stratified random sample. The method is simple: the
total area is divided into equal plots and an even number of sample units is taken at
random from each plot. It is possible to divided the total area into plots of different
sizes if there are known to be different habitats in the total area. In this second case
the number of sample units from each plot should be proportional to its size.

It might be tempting to conduct systematic sampling with sample units
placed at regular intervals across a study area. There is a statistical problem with
this strategy as most statistics require that a sample is taken at random from a
population. However, some field ecologists suggest that estimates derived from
systematic sampling are, on average, better than those from random sampling.

Timing of sampling

Most populations will be affected by season, time of day and local weather con-
ditions. It is very important that timing is taken into account either by sampling
strategy or by later analysis.

What I have been considering here is the problem faced by an ecologist work-
ing in the field and trying to design a suitable sampling strategy. The use of the
very powerful statistical technique analysis of variance (ANOVA) is more common
in the situation of a controlled experiment where you are analysing the effects of
different levels of a treatment (e.g. concentrations of fertilizer or temperature)
on some measured aspect of a population. Then, to get a true estimate of the
effect of the treatment, experimental design will be of paramount importance.

Experimental design

I do not intend to say very much about experimental design here as there are
whole books dedicated to the subject. However, that should not imply that
experimental design is an uninteresting or unimportant subject. The appropriate
design of an experiment is the key to successful analysis of a problem for without
the correct design you will never have the right sort of data. The problems of
sampling still exist in a designed experiment but the control of the system allows
the experimenter to ensure that there are sufficient individuals to sample, and
that all factor combinations have the same number of observations.
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Control

The idea of control in experiments is to remove the effect of all other factors
apart from the one that is being investigated. The word is often applied to a
group that has not been altered by an experimental manipulation and is used to
compare with a group that has. The assumption is that everything apart from
the manipulation is the same in the two groups so any differences must be the
result of the manipulation. There are different ways of applying controls and
different types of control. It is important to consider whether the control used
in an experiment is adequate to convince a sceptical reader that the effect
‘proved’ by the statistics is real or not. As a general rule of thumb more control
is required! It is always tempting to focus on the more interesting manipulated
groups and not give enough attention to control.

Procedural controls

These are often overlooked in experimental designs. The idea is that everything
done to the manipulated group, apart from the actual treatment, is done to a
procedural control group that is the same size as the experimental group and
the untouched control group. The idea of procedural control groups has been
widely used in recent medical studies and shown some interesting results. For
example, a new supplementary treatment for a common disease is being inves-
tigated. Everyone in the study is given the conventional treatment. Each indi-
vidual is then randomly (and secretly) assigned to one of three categories: the
control group is given nothing else, the experimental group is told about the
supplementary treatment and given the new drug and the procedural control
group is treated exactly as the experimental group except they are given a
dummy drug (e.g. chalk tablet or water injection). In this way the effect of the
drug can be differentiated from the effect of the procedure.

Procedural controls are especially important if the experimental system
requires a lot of preparation through building exclosure fences or with repeated
visits to a site or many interventions in a laboratory population. The technique
should nearly always be used in conjunction with the ‘untouched’ control.

Temporal control

This is another aspect of experimental design that is worth incorporating. If
the effect of a long-term manipulation is to be considered and there is only one
control group and one experimental group available it is better to start the
manipulation after the monitoring process has been underway for some time.
The reason for this is that the differences between the two populations without
any manipulation should be accounted for before the differences following the
manipulation are tested. The ideal experiment will use half of the time for
before and half for after manipulation. For example, if there are two lakes avail-
able to study the effect of eutrophication (surplus of nutrients) then the best



Hypothesis testing, sampling and design 29

design for a 2-year study is to monitor the lakes untouched for the first year and
then to add nutrients to one of the two lakes during the second year.

Experimental control

This is any control of environment imposed by the experimenter. This is the
classical type of control and is properly employed to remove all possible effects
on the observations other than that from the experimental manipulation itself.
The best advice is always to control as many factors as possible. So if the effect
of CO, levels on plant growth is being investigated then the experiment should
control all the factors that may affect growth: light, temperature, humidity,
water availability, soil organisms, soil type and nutrient availability. The degree
of environmental control required to isolate the effect of the one factor being
manipulated often leads to a very artificial situation with organisms being kept
in isolation in perfect conditions. These controlled environments are often so far
removed from the real world that the results are not really very informative.
Experimental control can be very expensive, requiring growth cabinets, control-
led-temperature chambers or incubators for even rather simple investigations.

Statistical control

This is an alternative to experimental control. Rather than fixing all the possible
factors that can affect the observations the factors are measured instead. Careful
recording of all the environmental conditions, both biotic and abiotic, that are
known to affect the observations being collected can then be used in statistical
analysis of the data. Providing the experiment is not confounded (e.g. if all the
manipulated individuals are in a cold area and all the unmanipulated in the
warm) it is often possible to unpick the various effects and remove them from
the analysis to leave only the effect of the manipulation. If statistical control is
to be attempted then efforts should be made to ensure that adequate monitor-
ing of all the possible effects is carried out and that the individuals in experi-
mental and control groups experience a range of conditions.

Statistical control is usually cheaper than experimental control but requires
more effort on the part of the researcher.

Some standard experimental designs

The Latin square is a system for placing replicates of treatments so that each of
the treatment levels experiences each column and row of the experimental area.
The reason for doing is to avoid confounding the effect of the experimental treat-
ment with any other factor that might be present in the experimental area (e.g. a
gradient of soil quality). The arrangements for the four treatments suggested here
is just one of many possible arrangements. Any arrangement of treatments such
that each appears once in each column and row is OK although it is probably
best, as here, to have each treatment level only occurring in one corner.
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If the experiment is carried out in a series of locations (often called blocks in
statistical jargon) it is important to ensure that each of the treatment levels is
equally represented in each of the blocks, otherwise any difference in condi-
tions will be confounded with the treatment levels being investigated.
Furthermore the position of the treatment levels within the blocks must not
be repeated.

Block 1 Block 2
A B A
D B D
Block 3 Block 4
D B C D
A C B A

If a large number of samples are to be assigned to different treatment levels
there are third obvious ways of assigning the levels: first to do all of level one
then two and so on, second to carry out the assignments entirely at random
and third to keep cycling through the levels in sequence. Each of these has
problems. The first method will confound any external changes with the dif-
ferent treatment levels (e.g. if the experimenter becomes more efficient dur-
ing the process). The second method is appealing but often leads to unwanted
runs of the same treatment or too few replicates of particular treatments.
The third may also confound the treatment levels with an external influ-
ence. The best strategy is a combination of the second and third methods
and is called stratified random assignment. The assignments are made in
batches with each treatment level appearing an equal number of times in
the batch (usually one or two) but assigned at random. In the example
shown there are three treatment levels (X, Y and Z) assigned twice each in
five batches of six.
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Statistics, variables

and distributions

There are many books available that discuss the history, philosophy and work-
ings of statistics at length. That is not my purpose here, but it is important to
have at least some idea of what statistics are, how different statistics are appro-
priate in different circumstances and that there are different types of data that
you might collect. This chapter covers much of the same ground as Chapter 2
but in much more detail. However, I'm still only scratching the surface here and
this section should only be used as a set of notes or pointers to further investiga-
tion of these subjects.

What are statistics?

In biology we are often concerned with groups of individuals. These ‘individu-
als’ might be single insects but they could also be, for example, herds, or species,
or blood cells. In most cases it is totally impractical to measure every individual
in the group or groups we are interested in. What we are forced to do instead is
to take measurements from a subset of the group. We call these subsets of the
whole group samples.

We can ask and answer questions about the groups by formulating hypothe-
ses. A simple question could be ‘is species A bigger than species B?’. If we had
access to data from all individuals in a group we could answer this type of ques-
tion very easily. However, we only have the sample and from the sample we
have to extrapolate to the whole group. This is the job of statistics.

For example, if the hypothesis is that the mean sizes of populations of pike in
two lakes are different we could easily find the answer if we had measured all
the fish. However, in reality we only have a sample of 20 fish from each lake and
the means of those samples might not be the same as that of all the fish. We
carry out statistics on the information we have in the two samples to determine
the probability that the hypothesis, or more usually its associated null hypoth-
esis, is true. The idea of hypothesis formulation and testing has already been
discussed in Chapter 4.

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Types of statistics

I intend to say as little as possible about types of statistics here. However, I feel
it is important to give a feel for the differences and the way that statistics have
been traditionally divided.

Descriptive statistics

These are usually the first to be calculated. They give information about the data
you have collected. This can be a measure of the ‘position’ of the data — that is,
mean or median — and the ‘dispersion’ — or how variable the data are. Some
descriptive statistics, such as means (averages), will be familiar to everyone.

There is a division of statistics into two groups that are usually labelled ‘para-
metric’ and ‘non-parametric’. This distinction is very real for statisticians but for
those of us just using the tests it seems rather artificial.

Parametric statistics

These statistics make assumptions about the form of the data under investiga-
tion. For instance, they usually require variables to follow known distributions,
usually the normal. If the data do conform to the assumptions then these tests
are usually more powerful and should therefore be preferred. There are also
types of questions that can only be answered if assumptions about distributions
are made.

Non-parametric statistics

These are statistics that require little or no knowledge of the distribution of the
data. Therefore they are often called ‘distribution-free’, ‘ranked’ or ‘ranking’
tests. In general these tests are less powerful but ‘safer’ if you have not tested all
the assumptions for a parametric test. Non-parametric tests are also somewhat
restrictive and cannot be used to answer some more complicated questions.

In this book, unlike many other books, the chapters are not ordered according
to the type of statistics. I have used the type of question you want to ask as the
method of dividing up the book.

What is a variable?

To carry out any statistics you need some data to work with. First you decide
what it is you are interested in and then select a suitable variable. The variable is
the property that you measure. It is the food of the statistics and choosing vari-
ables is something you must get right. For example, if you are interested in the
occurrence of a scale insect on two strains of citrus trees then a suitable variable
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might be ‘number of scale insects on a leaf’. However, if the strains differ in leaf
density or size of leaf then a more appropriate variable could be ‘number of scale
insects per square centimetre of leaf’. Then the insects may be bigger on one
strain than the other so perhaps ‘mass of scale insects per square centimetre of
leaf’. Each time the variable is refined in this example it becomes more difficult
to obtain, taking more time and effort. There is a trade-off. More effort required
for each observation leads to fewer data in total so any refinements to the vari-
able collected must be warranted.

Choosing the best variable is something of an art.

It is important to ensure that the variable or variables you choose to measure or
collect are appropriate to the task.

Note: | use the term variable throughout this book as it is the one in common usage
although the correct term is variate.

Types of variables or scales of measurement

There are many types of variable.

Measurement variables

These are variables where a numerical value is assigned. They can be further

subdivided.

Continuous variables

This type of variable (sometimes called ‘interval’ variables) theoretically has an
infinite number of values between any two points. Of course in practice the
accuracy of measurement will not be perfect, as it will be limited by the observer
and the equipment used. Therefore there will only be a limited number of pos-
sible values between any two points. Obvious examples of continuous variables
are lengths, weights and areas.

Note: accuracy and precision are two words that are often confused.

Accuracy is the closeness to the real value. This is usually set by the observer or the
equipment and should be chosen as appropriate to the variable. When you write down a
value it should reflect the accuracy with which the measurement was taken. If you meas-
ure to the nearest 0.1 g then 5g should be written as 5.0g, not 5.00 g;

Precision is the closeness of repeated measures to the same value. It is possible to
have data that are very precise but very inaccurate. For example, your balance gives
exactly the same value for repeated measures of the same object but they are all over-
weight because the balance was not calibrated properly. The data obtained would be
precise butinaccurate.
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Discrete variables

Unlike continuous variables this type of variable (also called ‘discontinuous’ or
occasionally ‘meristic’) has a limited number of possible values. These possibili-
ties are often, but not always, integers. For example, number of live-born off-
spring in a litter of mice can only ever be an integer as there is no possibility of
recording a fraction of an offspring.

Discrete variables are often produced by questionnaires. Respondents are
offered choices such as: 1, strongly disagree; 2, slightly disagree; 3, neutral; 4,
slightly agree; 5, strongly agree. There is clearly a continuous variable (‘agree-
ment’) here and division of responses into categories in this way is rather arbi-
trary. It would be very easy to devise different ways of dividing the responses to
obtain more or fewer possibilities.

The distinction between discrete and continuous variables can be rather
blurred.

Example 1: a discrete variable becomes continuous. If you measure the
number of cells in 1 ml of blood this must be an integer and therefore discrete.
However, it has so many possible values that it is effectively continuous.

Example 2: a continuous variable becomes discrete. Seed diameter is a con-
tinuous variable but if you measure poppy seed diameter to the nearest 0.05mm
there will be only a few possible values making it effectively discrete.

How accurate do | need to be?

It is often possible to use better equipment or become more careful when meas-
uring to increase accuracy. However, increased accuracy will take longer and
result in fewer data being collected: another trade-off. As a rule of thumb there
should usually be between 30 and 300 possible intervals between the smallest
and the largest value. If possible, adjust the accuracy of the measurement accord-
ingly. Don’t assume that measuring to as many decimal places as possible will
make the data any better.

Ranked variables

When data are ordered by magnitude and exact values are not relevant the vari-
able is called ranked. It is not assumed that the difference between 1 and 2 is the
same as that between 3 and 4. Often it is possible to put observations into rank
order without measuring at all. For example, plants from six pots could be
ranked in ‘health’ order by simple observation and assigned values from 1 to 6.

Attributes

These variables (also called ‘categorical’ or ‘nominal’ variables) have few catego-
ries; usually ‘yes’ or ‘no’, ‘male’ and ‘female’ or a small number of possibilities.
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For example, you could score flower colours as red, blue or yellow. Attributes or
categories should not have any obvious sequence.

Derived variables

Derived variables (or ‘computed’ variables) are usually calculated from two (or
more) other variables; for example, ratios, percentages, indices and rates.

Warning: you lose accuracy by combining variables into ratios.

For example, if we round to 0.1 then 1.2 implies 1.15-1.25, giving a maximum error of
4.2%, and 1.8 implies 1.75-1.85 with a maximum error of 2.8%. If these two observations
are combined into a single observation then 1.2/1.8 implies a range from 1.15/1.85—
1.25/1.75 or 0.622-0.714 giving a maximum error of 7%: this is much greater than the error
in the original data.

Distributions of combined variables are often awkward. Be very careful with
percentage data as percentages will often have rectangular (‘flat’ or ‘uniform’)
distributions and/or have limits at 0 and 100%. However, percentages are a
familiar and widely used method for expressing observations and there are a few
statistical tricks available to help you deal with them.

Ratios can also lead to a loss of information. For example, both 5/10
and 500/1000 will give a ratio of 0.5, losing all information about the size of
the sample.

Types of distribution

Why do you need to know about distributions? Just as there are different types
of variable, there are different types of distribution. All parametric statistics and
many non-parametric ones are based on features of distributions or on assump-
tions about data following certain distributions.

Discrete distributions

The Poisson distribution

This is a very useful tool to use as a starting point in many biological investiga-
tions. It is a distribution describing the number of times an event occurs in a
unit of time or space. Usually a sample of time or space is taken and the number
of events recorded. Examples of typical events are the number of fish-lice on a
fish or number of influenza cases reported in a week.
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Assumptions of the Poisson distribution

1 Mean number of occurrences is small relative to the maximum possible.
2 Occurrences of one event must be independent of others.

3 Occurrences are random.

The purpose of fitting to this distribution is to test for randomness or independ-
ence in either space or time. If the number of scale insects on leaves fits the
Poisson distribution then it can be assumed that the assumptions hold. Therefore
the occurrence of individual insects is unaffected by the presence of others, so
we can infer that the scale insects arrive at random and that no leaf is ‘full’ of
scale. If the distribution is significantly different from a Poisson then not all the
assumptions hold and further investigation should follow.

Poisson distributions only require knowledge of the mean as mean and vari-
ance are equal. This property is also very useful as simple inspection of the mean
and variance of observations in a sample will give you some idea of the form of
a distribution.

If the variance is greater than mean then the population is more clumped
(aggregated) than random. If the variance is less than the mean then it is
more ordered (uniform) than random (see Fig. 5.1). Distributions may be
described by simply quoting their variance/mean ratio, with a value of 1 indi-
cating a random (Poisson) distribution, and higher values indicating
clumping.

The binomial distribution

This is a discrete distribution of number of events. When there are two possible
outcomes for each event the probability of each is constant. For example, if the
probability of each birth producing a female is 0.5 (usually termed p) then the
probability of a male is 1 minus 0.5 (also 0.5 in this case and often termed g) as
there are no other possibilities. This means that each individual being born has
a 50% chance of being female and 50% chance of being male.

If this is expanded to families with more than one offspring then we can
start to apply probabilities to the proportions of males (M) and females (F).
For example in a family with two offspring there are four possible outcomes:
FF, FM, MF and MM (note that there are two routes to get one male and one
female). As the chance of each event has already been determined as 0.5
then the chance of each of the four outcomes is 0.5x0.5 or 0.25. In other
words there is a 25% chance of getting FF, 25% for MM and then 25% for
each of MF and FM. So 50% of families with two offspring will have one of
each sex.
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Fig. 5.1 Two hypothetical distributions of individuals in space. In the first the individuals
are highly clumped or aggregated. If quadrats were used to sample from this population
the variance in number of individuals per quadrat would exceed the mean. However,

in the second distribution the individuals are more ordered than random and the results
of number of individuals per quadrat would show a variance less than the mean.

This can be expanded further to three offspring where there are four possible
families (reached through eight different sequences, each with a 0.125 proba-

bility of occurrence):

Female offspring Male offspring Probability Sequences
3 0 0.125 (1/8) FFF
2 1 0375(3/8)  MFF, FME FFM
1 2 0375 (3/8)  MMEF, MFM, FMM
0 3 0.125 (1/8) MMM
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There are many uses of this expansion from single events to groups in biological
investigation. To stay with the male/female example for the moment, an inves-
tigation into 480 broods of song thrushes (Turdus philomelos) where there were
five eggs surviving to fledging gave frequencies (numbers of observations) for
each of the six possible categories of families:

Females Males Probability Expected no. Observed no.
5 0 0.03125 15 21
4 1 0.15625 75 76
3 2 0.31250 150 138
2 3 0.31250 150 142
1 4 0.15625 75 80
0 5 0.03125 15 23

The expected frequencies from the assumption of a binomial distribution can
be tested against the observed numbers using a chi-square test or a G-test. In
this case, despite having fewer broods with three of one sex and two of the other
than was expected, the difference is not significant and therefore we accept the
null hypothesis that the sexes of individuals in song thrush broods of five follow
a binomial distribution with a p of 0.5 (i.e. there is a 50% chance of having a
female offspring).

The binomial makes a very good starting place for a null hypothesis of even
chances of events happening in all groups observed. If the binomial distribution
were not followed then alternative explanations about aggregated or dispersed
events have to be invoked.

The negative binomial distribution

In many organisms aggregation of individuals in time and/or space is almost
ubiquitous. The negative binomial distribution is a discrete distribution that can
be used to describe clumped data (i.e. when there are more very crowded and
more sparse observations than a Poisson distribution with the same mean).
There are reasonable assumptions that can be made about the way organisms
distribute themselves that result in a negative binomial distribution. This allows
a sensible null hypothesis about aggregated distributions to be made.

The hypergeometric distribution

This is another theoretical, discrete distribution that has some use in biology.
The hypergeometric distribution is used to describe events where individuals
are removed from a population and not replaced. It is therefore quite useful in
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small, closed populations that are being sampled destructively and also in the
application of mark/recapture techniques.

Continuous distributions

The rectangular distribution

This distribution (also called a ‘flat’, ‘even’ or ‘uniform’ distribution) describes
any distribution where all values are equally likely to occur. This distribution
rarely appears in reality but it can sometimes be useful for generating a null
hypothesis (see Chapter 4).

The normal distribution

This is the most important distribution in statistics and it is often assumed that
data are distributed in this way. Therefore is it often important to determine
whether the data set is a good fit to a normal distribution or not. Methods you
can use to test this are the Kolmogorov—Smirnov test, the Anderson-Darling
test, the Shapiro-Wilk test or a chi-square goodness of fit (see pages 75 and
86-92). These methods are not very sensitive when samples are small and
should not be used if there are fewer than about 50 observations.

The normal distribution is a symmetrical, continuous distribution and is
described by two parameters: the mean, i (mu, describing the position), and the
standard deviation, ¢ (sigma, describing the spread). These two parameters are
estimated from samples and assigned the letters m and s.

The normal is sometimes called the Gaussian distribution. A normal distribu-
tion always has a characteristic bell shape.

In a perfect normal distribution (where W is the mean and 6 is the variance):

W=+ 6 contains 68.25% of the observations; 50% fall between u+0.674c;

W=+20 contains 95.45% of the observations; 95% fall between u+1.966 (see
Fig. 5.2),

W+36 contains 99.73% of the observations; 99% fall between p+2.576a.

The standardized normal distribution

This is a derived distribution where each observation in a normal distribu-
tion is processed by subtracting the mean and dividing by the standard devia-
tion. This gives a normal distribution with a mean of O and a variance of 1.
The purpose of this transformation is to compare distributions that might
have very different means on the same scale to look at the shapes of the
distributions.
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Fig. 5.2 In a normal distribution 95% of the observations will fall within 1.96 standard
deviations of the mean. This leaves 2.5% of the observations in each of the tails
of this symmetrical distribution (shaded).

Convergence of a Poisson distribution to a normal distribution

Even though a Poisson distribution is discrete (you can only get integers), when
the mean number of observations is very large a Poisson distribution will
approximate to a normal distribution. This could arise for example if you
counted the number of springtails in a group of soil samples and found that they
fitted to both Poisson and normal.

Note: binomial distribution with more than 100 observations (or fewer if
p=0.5) will also approximate to a normal distribution.

Sampling distributions and the ‘central limit theorem’

The means of samples taken from any shape of parent distribution will them-
selves have a normal distribution: that is the central limit theorem. This is the
basis for the rule that the standard deviation of the sample mean (i.e. standard
error) of a sample is s/\n, where s is the standard deviation of the observations
and n is the number of observations.

Describing the normal distribution further

Two types of departure from normality in a data set are skewness and kurtosis.

Skewness

This is another word for asymmetry; skewness means that one tail of the bell-
shaped curve is drawn out more than the other (see Figs 5.3 and 5.4). Skews
are either to the right or left depending on whether the right or left tails are
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Fig. 5.3 This distribution is clearly right skewed and has a g, value well above zero. In
a skewed distribution the mean is always nearer the tail than the mode with the median

falling between the mean and the mode.

(a)

(b)

Fig. 5.4 These two frequency distributions are clearly not symmetrical. The data in
(a) are right skewed and have a g, value of 1.53. The data (b) are left skewed and have a

g, value of -0.335.

drawn out. (i.e. long right tail results in a right-skewed distribution).
Statisticians label the true skewness parameter y, (gamma,) and the estimated
value g,. A negative g, indicates skewness to the left and a positive g, skewness
to the right.
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If a distribution is skewed the mean is nearer to the tail than the mode and the median, |
as shown in Fig. 5.3.

Kurtosis

This is a measure of the ‘flatness’ of a distribution. A symmetrical distribu-
tion can differ from the normal in being either leptokurtic or platykurtic.
A leptokurtic distribution has more observations very close to the mean and
in the tails. A platykurtic distribution has more observations in the ‘shoul-
ders’ and fewer around the mean and tails. A bimodal distribution is, there-
fore, extremely platykurtic. The kurtosis parameter is 7y, (gamma,) and
estimated by g,.

In a perfect normal distribution both g, and g, are equal to zero. A negative g,
indicates a platykurtic distribution and a positive g, leptokurtosis.

Is a distribution normal?

It is extremely unlikely that you will collect a data set that is perfectly normally
distributed. What you need to know is whether the data set differs significantly
from a normal distribution. One good way for checking data for departures
from ‘normality’ is to use the Kolmogorov—Smirnov test, Anderson-Darling test
or Shapiro-Wilk test. These tests compare two continuous distributions with
the null hypothesis that they are the same (i.e. it tests the sample data against a
normal distribution with the same mean and variance as the sample). All these
tests are usually to be preferred over the chi-square goodness of fit method
which is another commonly used method of determining whether data set is
normally distributed. See Chapter 7 for details of the Kolmogorov—Smirnoy,
Anderson—Darling, Shapiro-Wilk and chi-square goodness of fit tests (pages
75-92).

Transformations

Parametric statistics assume that data set you are using is distributed normally.
So first of all check that this is true using a statistical test fitting your distribu-
tion to a perfect normal distribution with the same mean and variance. If the
data set is significantly different from normal try a transformation such as loga-
rithmic, or square root, arcsine square root for percentage or proportion data, or
probits or logits. There are many standard methods to try but as long as you
treat each piece of data (datum) in exactly the same way you can do any trans-
formation you like. Be warned that logarithmic (log) transformations require
you to consider the base of the log. In some packages ‘log’ will give a base 10 log
transformation, while in others it will give a natural log with base e (approxi-
mately 2.71).
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An example

A study on feeding preferences in a marshland birds counted the number of
grey herons (Ardea cinerea) seen in creeks and open water at different times of
the day. The percentage in creeks is converted to a proportion and the angular
transformation and logit transformations given.

No.in No.in Percentage in Proportionin  Angular- Logit-
Time creek open creek creek transformed  transformed
0600 22 25 46.8 0.47 43.2 -0.13
1200 12 19 38.7 0.39 38.5 -0.46
1800 25 8 75.8 0.76 60.5 1.14

The angular transformation

The angular or arcsine square-root transformation is so routinely applied to
percentage data that it warrants a description of the method. A percentage
is converted to a proportion, the square root taken and then the arcsine
(inverse sine or sin™!) is taken. To make sure you have the calculation cor-
rect, either use the values from the table above or check that 10% converts
to about 18 after an angular transformation and 100% converts to 90. A com-
mon problem encountered with this transformation is that packages use
radians rather than degrees and this must be accounted for. Remember that
if you are converting direct from percentages rather than proportions, the
variable to be converted should be divided by 100 as part of the
transformation.

Assuming the percentages have been converted to proportions and are
stored in a variable called ‘prop’, from the ‘Transform’ menu select ‘Compute
Variable’. In the ‘Compute Variable’ box that appears type a name for the target
variable (say, ‘angular’). Select ‘All’ in the ‘Function group:’ list. Then from the
list of ‘Functions and Special Variables’, select ‘Arsin’ and click the up arrow to
add it to the ‘numeric expression’. Next, with the question mark highlighted in
blue, select ‘Sqrt’ from the functions list. Finally, with the question mark selected
again, select the variable ‘prop’ and move it across to the ‘numeric expression’
(either by double clicking, or by highlighting and clicking the right arrow).
Finally, the correction for converting radians to degrees needs to be applied and
the expression multiplied by 57.295.

The ‘numeric expression’ should now read ‘57.295*ARSIN(SQRT (prop))’.
Click ‘OK’ and the converted numbers should appear in a new variable.
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] The sin! function is ‘asin ()’ and the square-root function is ‘sqgrt ().

Assuming you have percentages in a variable labelled as ‘x’ and you want the
results in a variable labelled ‘angularx’ type in the following:

> angularx=57.295*asin(sqgrt(x/100))

The correction factor of 57.295 converts radians to degrees. Remember that if
your data are already expressed as a proportion rather than percentage then you
don’t need to divide by 100.

This assumes that the percentages have been converted to proportions

and are in a variable called ‘Prop’. From the ‘Calc’ menu, select ‘Calculator...”. In
the ‘Store results in variable’ box, type an appropriate name, such as ‘Angular’.
Then from the list of ‘Functions’ highlight ‘Degrees’ and click ‘Select’. Then
highlight ‘Arcsine’ and click ‘Select’. ‘ DEGREES(ASIN(number))’ should appear
in the ‘Expression’ box. Then scroll down the ‘Functions’ list to ‘Square root’ and
click‘Select’. The‘Expression’ should now be DEGREES(ASIN(SQRT (number)))’.
Double click on ‘Prop’ from the list on the left and the ‘Expression’ becomes
‘DEGREES(ASIN(SQRT(‘Prop’)))’. Click ‘OK’ to run the transformation.

[If you have the ‘commands’ enabled (‘Editor’ menu then ‘Enable commands’),
and you have already labelled one column as ‘Angular’, you could type ‘Let
‘Angular’ = DEGREES(ASIN(SQRT(‘Prop”)))’ at the MTB> prompt. Or you
can input commands using the ‘Edit’ menu then ‘Command Line Editor’.]

Assuming the proportion is in cell Al the conversion is achieved with
the formula ‘=DEGREES(ASIN(SQRT(A1)))". DEGREES, ASIN and SQRT

can either be typed in directly or selected from ‘Paste function’ (f) under the
‘Math&Trig’ submenu. The most common error in calculating the angular
transformation in Excel comes from the conversion of radians into degrees.

The logit transformation

Logits are needed for logistic regression. The advantage of a logit transformation
is that it converts proportional data limited to O and 1 to an unlimited scale by
using the likelihood of events. The transformation stretches out values that are
near 0 and 1. The logit of a proportion, p, is the natural log (In or log ) of p/gq
where g is the proportion that is not p (i.e. p+g=1). Note that logits for 0 and
1 are infinite, so will probably give odd results. The logit for 50% should be 0.
All values below 50% will be negative, and all above 50% will be positive.

Assuming the data have been converted to proportions and are in a

variable called ‘prop’, from the ‘“Transform’ menu, select ‘Compute Variable’. In
the ‘Compute Variable’ box that appears type a name for the target variable
(say, ‘logit’). Select either ‘All’ or ‘Arithmetic’ from the ‘Function group:’ list.
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Then either, from the list of functions, select ‘Ln’ and click the up arrow to add
it to the ‘numeric expression’, or type directly into the ‘Numeric expression’
box. Replace the question mark with ‘prop/(1-prop)’, replacing ‘prop’ with the
name of your variable. Click ‘OK’ and the logit-transformed numbers should
appear in a new variable.

If converting direct from percentages, the variable to be converted should be
divided by 100 as part of the transformation. In this case, assuming your per-
centage values are in a variable called ‘perc’, your transformation would be

‘LN( (perc/100)/(1 - (perc/100)))’.

B} This assumes that your data have been converted to proportions and are in a
variable called ‘prop’ and that you want the transformed data in ‘logit’. The
function for a natural log is ‘1og (), so the logit for ‘prop’ is simply:

> logit=log(prop/ (l-prop))

Be warned that values of 0 and 1 will cause the logit to be infinite, giving the
error ‘Inf’.

Assuming the data have been converted to proportions are in column
C1, from the ‘Calc’ menu select ‘Calculator...”. In the ‘Store results in variable’
box, type an appropriate name, such as ‘Logit’. From the list of ‘Functions’
highlight ‘Natural log’ and click ‘Select’. ‘LN(number)’ will appear in the
‘Expression:’ box. Replace the text ‘number’ with ‘C1/(1 — C1)’, then click ‘OK’

[If you have the ‘commands’ enabled, you could type ‘Let ‘Logit'=LOGE(C1/
(1 - C1)) at the MTB> prompt. Or you can input commands using ‘Edit’” menu
then ‘Command Line Editor’.]

Assuming the proportion is in cell A2 the conversion is achieved with the
formula =LN(A2/(1-A2)). LN can either be typed directly or selected from the
‘Insert function’ (f) under the ‘Math&Trig’ submenu.

The t-distribution

This symmetrical, continuous distribution is related to the normal distribution
but is flatter with extended tails. It is the distribution of deviations from the
mean divided by the sample standard error of a huge number of samples. As
the sample standard error varies between samples the spread is greater than if
the deviations were divided by the true standard deviation of the mean (stand-
ard error). t-distributions have degrees of freedom associated with them that
correspond to the size of the sample. So the smallest degrees of freedom of 1
from just two observations will give a very flat distribution and when the degrees
of freedom are infininte (i.e. in a sample with an infinite number of observa-
tions) the t-distribution will recapture the normal distribution.
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Confidence intervals

95% confidence intervals (CI) are calculated for samples using ¢-distributions.
(Although when the true 6, standard deviation, is known, or the sample size is
huge, the normal distribution can be used.) 95% CI should be preferred to the
more usually quoted mean+S.E. as the standard error of the mean is only really
useful if the sample size is known and then it can be converted to a confidence
interval of the required width.

Be very careful when you see headings such as ‘Means and Standard Deviations’ as this
wording is slightly ambiguous. It usually translates as mean and standard deviation of the
observations but is, on occasion, referring to mean and its standard deviation (i.e. stand-
ard error).

The chi-square (y?) distribution

This is another continuous distribution that is very useful in statistics. Unlike
the normal and the ¢ distributions it is asymmetric and varies from 0 to positive
infinity. The chi-square distribution is related to variance.

I X?is the usual way of expressing sample statistics approximating to y2 |

The exponential distribution

This is a continuous distribution that is occasionally useful as a null model in
biology. It occurs when there is a constant probability of birth, death, increase
or decrease. So, for example, if a population of beetles invades a new area
they may have an exponential increase in numbers as their rate of increase is
constant. As soon as the population stops following the exponential distribu-
tion the rate of increase has clearly changed. This may indicate that intraspe-
cific competition has reduced the growth rate or a predator is starting to have
an effect.

Exponential distributions can also be used to examine decreasing observa-
tions. This is usually called the negative exponential distribution. For example,
the amount of drug in the bloodstream after an injection may have an exponen-
tial decay with 10% being removed every hour. You can test an observed distri-
bution against an expected exponential distribution using a variety of tests of
difference.
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Non-parametric ‘distributions’

It is sometimes better to ignore distributions totally. This is the case when data
set is known to be awkward or difficult to transform. The advantages of making
no assumptions about the distribution of the data are great as it allows greater
flexibility but there are some limitations in the type of statistical tests that can
be used and in the power of the tests.

Ranking, quartiles and the interquartile range

In non-parametric tests data sets are usually ranked before they can be exam-
ined statistically (computer packages do this for you). If a set of data is put in
rank order from the smallest value to the largest then information about the
position of the data set or the spread can be gained by inspecting values at cer-
tain points in the ranked data set (for example the median is the value of the
data point (datum) in the middle of the ranked set).

A quartile is simply the value of the data point that lies a quarter of the way
into a data set and it is commonly used to describe the spread of a non-parametric
distribution.

The interquartile range is the difference in the values between the data point
one-quarter of the way down the ranked list to the point three-quarters of the
way down.

Box and whisker plots

Box and whisker plots (also known as, a.k.a., box plots) summarize data where
there are no assumptions of distribution. A sample is represented by a box the
top and bottom of which represent the upper and lower quartiles (i.e. the box
covers the interquartile range). The box is divided at the median value. A line
(the whisker) is drawn from the top of the box to the largest value within 1.5
interquartile ranges of the top and the same from the bottom. Any values out-
side this range are then added as symbols (see Fig. 6.1). These outliers are often
identified in some way (they certainly are in the statistical package SPSS) so you
can check them. Outliers are the values most likely to have been mistyped!



Descriptive and

presentational
techniques

The techniques in this chapter are presented in roughly the same order as they
appear in the key (see Chapter 3).

General advice

Descriptive and presentational techniques serve two rather different pur-
poses. The first is to summarize and display data in the best way possible for
a reader to derive information about the data. If this is the intention then
the techniques used should be a simple as possible and require the minimum
effort from the reader. The second purpose is for researchers to explore their
own data. A variety of methods should be employed that show the data from
different perspectives. In this way you can become familiar with your data
and may be stimulated to pursue new lines of enquiries or test different
hypotheses.

This chapter is intended to offer general advice on data presentation and
although all the examples are generated in the statistical packages featured in
the next chapters there are no detailed descriptions for navigating the menus to
generate the figures you see.

Displaying data: summarizing a single variable

Box and whisker plot (box plot)

This is an excellent way of summarizing data, especially if it is not normally
distributed. The plot shows the median value as a thick bar, the interquartile
range as a box and the full range as the ‘whiskers’. Some statistics and graph
drawing packages show outliers (data points well outside the range of others) as
individuals points. An example is shown in Fig. 6.1.

Choosing and Using Statistics: A Biologist's Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Fig. 6.1 This box and whisker plot was created in SPSS. There were 40 observations of
numbers of bird species seen by a single observer from the same point during a fixed
time. It shows that the median number was seven and that 50% of the observations
were between 4 and 8. Note that there were single observations of 14 and 15 (marked
as crosses) and that the axis extends to —2 even though 0 is clearly a lower limit (it is
impossible to see fewer than zero species of birds).

Displaying data: showing the distribution of a single variable

It is important that any graphical depiction of data is clear. Usually the easiest
and clearest way to display a single set of data is to use a histogram or a bar chart
of frequency of occurrence. If you have discrete data then it may be best to
display each possible value. However, in most cases it will be necessary to group
the data into classes. There is often confusion about the difference between a
histogram and a bar chart.

Bar chart: for discrete data

Each possibility is represented on the horizontal axis (abscissa or x-axis), with
frequency on the vertical axis (ordinate or y-axis). Gaps between the bars
symbolize the discrete nature of the data (see Fig. 6.2 for an example). If there
are a very large number of possibilities then a bar chart may be inappropriate as
clumping the data into groups will give a better picture of the distribution. If
this happens then you have moved to a histogram.
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Fig. 6.2 This bar chart is generated using a larger version of the same data set used to
create the box and whisker plot in Fig. 6.1. This SPSS chart shows the number of bird
species seen in a garden in a 15-min period. There were 400 observations made. Clearly
the number of birds can never be below 0 although it might be greater than 15.
Observations of this kind will always be integers although there is certainly no require-
ment for data to be integers to be suitable for bar charts. Gaps between the bars
symbolize the discontinuous nature of the data.
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Histogram: for continuous data

Observations are grouped into artificial classes. The mid-point of the class is
displayed as a label on the x-axis and frequency (number of observations) on the
y-axis. No gaps should be left between classes to symbolize the continuous
nature of the data. Shading, especially intense shading, should be used sparingly.
See Fig. 6.3 for an example.

Number of classes to display in a histogram?

As a rule of thumb use 12-20 classes (categories along the x-axis). However, it is impor-
tant to employ some common sense. Small samples should rarely need to have 12 classes
and huge samples may be grouped into more than 20 classes.

As an alternative rule of thumb use n classes (where nis the number of observations
in your sample).

In the example of the beetle elytra above there are 19 classes of 1.5mm each although
only 15 have any observations. This fits with the first rule of thumb. The second rule of
thumb suggests 24 classes.
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Fig. 6.3 This histogram presents a data set comprising 589 observations of elytron length
in a population of beetles. The observations are linear measures and clearly continuous.
All measurements were made to the nearest 0.1 mm. Each bar represents a range of
values and there are no gaps between the bars. Values on the x-axis show the midpoints
of the range for half the bars.

Pie chart: for categorical data or attribute data

A pie chart should only be used if the categories have no logical sequence. For
example, if the categories are blood groups, species of tree or mutants of
Drosophila then a pie chart is probably a better method of presentation than a
bar chart. However, if the categories have a logical sequence, such as five arbi-
trarily defined levels of ripeness, then a bar chart will be more informative. An
example is shown in Fig. 6.4.

Tip: do not use three-dimensional bars or shadow effects on histograms or bar
charts (unless it is for a display and then only in exceptional circumstances).
Such effects obscure the data as it is difficult to see exactly where the top of the
bar lies. I would also advise against the use of colour unless it is absolutely neces-
sary (although I can’t think of an example where I would advocate its use!).

Descriptive statistics

Statistics of location or position

There are several of ways of defining the ‘location’ of a distribution. It is tempting
to focus only on the arithmetic mean as this is the easiest statistic to calculate
and the most commonly used. However, it is worth considering some of the
alternatives, especially the median.
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Fig. 6.4 This pie chart, generated in SPSS, shows the blood groups of a sample of

200 people. A pie chart is appropriate for this sort of data because if it was presented as a
bar chart the x-axis would have no real meaning. Shading is not required but may be used
if desired. Slices may be ‘exploded’ for emphasis as with the AB slice in this example.

Arithmetic mean

This is the ‘normal’ mean, often called an average and by far the most com-
monly used measure of location; when written it is usually denoted as x-bar
(i.e. X), an estimate of the true mean, which is represented by the Greek letter,
U (mu), sometimes written as _.

Geometric mean

This is the antilog of the mean of the logged data; it is always smaller than the
arithmetic mean. The most commonly encountered use of this statistic is when
data have been logged or when data sets that are known to be right skewed are
being compared.

Harmonic mean

This is the reciprocal of the mean of the reciprocals and is always smaller than
geometric mean. This type of mean is rarely needed.

Median

This is the middle value of a ranked data set. After the arithmetic mean it is the
next most commonly used measure of location. It is the measure highlighted in
box and whisker plots. If all the data are put into rank order (arranged in a list
in from the largest value to the smallest) the median is the value associated with

the middle ranked item (halfway down the list).

Mode

This is the most ‘fashionable’ value in a set of data; the value that occurs most
frequently. It can be used with any type of data, even categorical data.
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Fig. 6.5 Three rather different frequency distributions. (a) There is a clear single mode of
a unimodal distribution. (b) There are two almost totally distinct distributions, giving a
bimodal distribution. This might indicate two separate populations, different genders or
different species. (c) The pattern of the frequency distribution is even more complex.
There are three distinct modes making a multimodal distribution. This may indicate, for
example, three cohorts of recruitment into a population.
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One of the problems with the use of the mode is that it is rarely suitable if the
observations are made with any degree of precision (e.g. femur length to the
nearest 0.01 mm) as there will be a much lower chance of an observation being
repeated. Therefore the mode should only be used when there are either a very
large number of observations or a fairly small number of possible values.

Note: in any unimodal, symmetrical distribution (for example, a perfect normal distribution)
the mean, median and mode are all the same (see Fig. 5.3 for what happens in an
asymmetric distribution).

Statistics of distribution, dispersion or spread

There are several ways to display the distribution or spread of a set of observa-
tions. However, it is important that the measure used is appropriate to the data
and the statistic of location (e.g. median) used.

Range

This is the most basic measure of dispersion and is simply the difference between
the largest and smallest observations in a sample. It is usually quoted as the
smallest and largest value (e.g. range=9.76-15.23 cm).

Interquartile range

This is a non-parametric measure of dispersion that works on the ranked data.
It is the difference between the value of the data item (datum) 25% of the way
down a ranked list and the one 75% down. These values are called quartiles. The
interquartile range is much more useful than the range as it is unaffected by
outliers. Unlike many other measures of dispersion, the interquartile range is
not necessarily symmetrical about the median. The quartiles are often given the

codes ‘Q1’ and ‘Q3’.

Variance

The variance usually refers to the sample variance, s?, which is an estimate of the
true variance, 6° (sigma squared). It is the mean of the squared deviations of
observations from their arithmetic mean. Variance is rarely used as a descriptive
statistic as it is not in the same units as the original observations. However, many
statistical tests use variance in their calculations.

Standard deviation (SD)

This is usually an estimate, s, of the true standard deviation, ¢ (sigma). It is the
square root of the variance. This is commonly used as a descriptive statistic as it
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is in the same units as the original measurements or observations. However,
confidence intervals should be used if comparisons of different sets of observa-
tions are required.

Standard error (SE)

By convention this is short for ‘standard error of the mean’ (i.e. the standard
deviation of a distribution of means for repeated samples from a population).
Standard errors are often quoted with means although this is probably because
they are small rather than for any good statistical reason! If several samples are
to be compared then the confidence interval should be preferred. If a measure
of the variation in the sample is required then standard deviation is better.

In theory there is no difference in calculation between a standard error and a standard
deviation, just that the former measures the standard deviation of a hypothetical sample
of means.

Confidence intervals (CI) or confidence limits

These are derived from the standard error of the mean. Confidence intervals are
the most useful measure of the dispersion of a distribution.

If a sample from a population is very large then the true mean of the popula-
tion is 95% likely to lie within 1.96 standard errors of the sample mean. This
region is called the 95% confidence interval as you are 95% certain that it con-
tains the true mean of a population.

As samples get smaller then the multiplier used gets larger and the confidence
intervals get wider. (If you have statistical tables it is easy to determine the
required multiplier as it is derived from the t-distribution.) Confidence intervals
are always symmetrical about the arithmetic mean. They are to be preferred over
standard errors if several sets of observations are being compared.

Coefficient of variation

This is used to compare the amount of variation in populations with different
means where direct comparisons of the standard deviations (s) are difficult to
make as they are confounded by differences in scale. The coefficient of variation
is usually denoted V or CV. CV=(100s)/mean and is usually expressed as a
percentage.

Other summary statistics

There are other components of shape of the distribution of observations that
can be interpreted easily. Knowledge of the skewness of a data set is particularly
useful.
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Skewness

This is a measure of the symmetry of a data set. If the data set is symmetrical
then the value of skewness will be 0. If there is a tail to the right it will be posi-
tive; if there is a tail to the left it will be negative. Meaningful values for skewness
are only possible if there are more than 30 (and preferably a lot more) observa-
tions in the data set. Normal distributions are symmetrical and consequently
have a skewness of 0. Skewness is discussed in Chapter 5, page 41.

Kurtosis

This is a measure of the shape of a distribution. It tells you whether there are
more observations around the mean or less when compared to a normal distri-
bution. Meaningful values are only possible if there are more than 100 observa-
tions in the data set. Kurtosis is discussed in Chapter 5, page 43.

Using the computer packages

General

All statistical packages will give summary statistics for sets of observations. However,
generating exactly the set of statistics you are interested in may take several steps.
The less frequently used statistics, such as kurtosis, may not be available.

In this package the data may appear to be in the same spreadsheet form
as a package such as Excel but the approach is rather different, as the statistics

are not displayed on the spreadsheet but in a separate window. The data
should be in a single column with an appropriate label. To change the column
label simply double click on the column name (“VAR0O0001’ by default), or
click on the ‘“Variable View’ tab, and replace the ‘Name’ with something
more suitable (you are limited to eight characters, spaces are not allowed
and you should use the ‘Label’ column if you need to add a more descriptive
name). The screen shot in Fig. 6.6 shows the various measures of dispersion
that are available under the ‘Descriptives...” options in the ‘Descriptive
Statistics’ submenu of the ‘Analyze’ menu. The default selections are shown
which include the rarely useful minimum and maximum (Fig. 6.6). Once
you have chosen the options you want the statistics are displayed in the
‘Output’ window. As you proceed through an SPSS session output
accumulates in this window. This is very useful as you can go back and check
results of previous tests very easily.

Further descriptive statistics can be accessed. From the ‘Analyze’ menu select
‘Descriptive Statistics’ then ‘Frequencies...”. Select the ‘Statistics...” button in
the dialogue box and an array of options such as quartiles, skewness, kurtosis,
variance, mode and median are available. I suggest you uncheck the ‘Display
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Fig.6.6 A screen shot from SPSS showing the selection of descriptive statistics available.

frequency tables’ unless you want a list of all the values in your variable and
how many times they occur.

B Simple descriptive statistics are easy to access in R, although the results are
displayed in a rather unhelpful way. In the example below the arithmetic mean
of variable ‘x’ is reported:

> mean (x)
[1] 1.703862

)

The functions ‘mean ()’ and ‘median ()’ are obvious. ‘var ()’ gives variance,
‘sd ()’ gives standard deviation, ‘length ()’ give the number of values in a
variable and ‘sum ()’ totals the values in the variable, while ‘range (x)’ will
report the lowest and highest value in variable ‘x’.

The function ‘summary ()’ gives the mean, median, maximum, minimum
and quartiles. Other descriptive statistics are available if packages are installed.
Search for ‘geometric mean’, or ‘standard error of the mean’ and install the
relevant package.

Alternatively you could construct a small script in R to calculate the summary
statistic.

The geometric mean is the antilog [the function is called ‘exp ()’ in R] of the
mean of the log values of a set of data that can be very easily written in R. The
following function calculates the geometric mean of variable x’:

> exp(mean (log(x) ) )
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Skewness, or asymmetry, of the data in variable ‘x’ can be accessed by:
> boot::k3.linear (x)

There is no function for the harmonic mean, but this can be easily constructed.
Assuming the data are in a variable ‘x’ the harmonic mean is:

> 1/ (mean(1/x) )

Simple charts are very easy to access in R. A pie chart can be drawn with the
function ‘pie()’, and the data and labels can be passed to the function or set
within the function, for example:

> pie(c(12,4,25),labels=c(“Ash”,”0Oak”,”"E1lm") )

The basic plotting function in R is ‘plot ()’ and this is extremely versatile.
Again the data can be passed direct to the function, although that would be
unusual. A simple demonstration would plot a set of numbers against their
squares:

> plot(c(1:10),c((1:10)"2))

Note that ‘1:10” gives the numbers 1-10, whereas ‘(1:10)~2’ gives the
squares of 1-10. Axis labels can be added using the syntax ‘xlab="label
text”’ within the plot function:

> plot(c(1:10),c((1:10)"2), xlab="X axis”, ylab="Y
axis”)

To get help on the options available simply type:

> ?plot

The data for a single variable should be in one column in the spreadsheet
section of the package. The variable should be named appropriately in the cell

under ‘C1’. Spaces are allowed as part of the label. To get simple descriptive
statistics go to the ‘Stat’ menu and select ‘Basic statistics’ and then ‘Display
Descriptive Statistics...". Move the name of the column with the data from the
list on the left into the “Variables:” box using the ‘Select’ button. Either click
‘OK’ now or take a detour to either the ‘Graphs..." options first to request some
graphical output or to the ‘Statistics’ options to add output.
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Descriptive Statistics: Height

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
Height 24 0 12.985 0.253 1.239 11.000 12.043 12.550 13.750
Variable Maximum
Height 15.630

This is the basic output that is generated:

All the basics are reported here: the number of observations in the data set
(‘N"), the arithmetic mean (‘Mean’), largest and smallest values (‘Maximum’
and ‘Minimum’), standard deviation (‘StDev’) and standard error (‘SE Mean’)
as well as the ‘non-parametric’ distribution statistics: median and the upper and
lower quartiles (‘Q3’ and ‘Q1’). Quartiles are explained further elsewhere in
this chapter. One option in the ‘Statistics’ options is the rather unusual trimmed
mean ‘TrMean’ where the tails of the distribution, top and bottom 5% in this
case, are removed before a mean is calculated. This makes the estimate of the
mean less likely to be affected by outliers.

If the ‘Graphical summary’ is selected as an option in the ‘Graphs..." options
box, there is considerably more output to assess (shown in Fig. 6.7).

T e -

Summary for Height

95% Confidence Intervais

Anderson-Darkng Mormaity Test

A-Sguared 069
P-Vahe 0.061
Mean 12,985
SrDew 1271
Varance 1534
Skewress 0.715570
Kurtoek 0.280306
N 24
aninm 11.000
L5t Quurtis 12,043
Medan 12.550
Zrd Quartle 13.750
Maximm 15.630
5% Confidence Interval for Mean
12.462 13.508

35% Conicence Interva for Madan

12208

13517

95% Confidence Interval for StDev

0.963

1.738

Fig. 6.7 A screen shot from MINITAB when the ‘Graphical summary’ option has been

chosen to display descriptive statistics.
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This output contains much of the same information as the non-graphical
version but with some extras. In the mass of output on the right of the output
the first thing is the ‘Anderson-Darling Normality Test’. This is a test to determine
whether the data in question deviate from a normal distribution. The ‘A-Squared’
value is the output from a test and ‘P-Value’ is the probability of seeing data
that, or more, extreme if they are a sample from a normal distribution. If the
P-value is less than 0.05 then this means it is unlikely to be normally distributed
and therefore parametric statistics should not be used.

After this test comes the more usual descriptive statistics of arithmetic mean,
standard deviation, variance and then the measures of the shape of the
distribution — skewness and kurtosis — and the number of observations, ‘N’.
Next comes some information about the data arranged in rank order. The value
of the smallest and largest observations and then observations one-quarter (first
quartile), half (median) and three-quarters (third quartile) of the way down a
ranked data list.

The last section gives 95% confidence intervals for three of the descriptive
statistics: ‘Mean’ (the arithmetic mean), the median and ‘StDev’ (the standard
deviation). On the left of the output are three graphs. First is a histogram of the
raw data with a normal distribution superimposed on it (the normal distribution
shown has the same mean and standard deviation as the data). Then comes a
box and whisker plot of the data (described elsewhere in this chapter) using the
same scale as the histogram and finally graphical representations of the mean
and median with their 95% confidence intervals.

In this package you have to assign a cell of the spreadsheet to contain the

summary statistic you require. Assign a cell by clicking on any empty cell. Then
you identify the cells that contain the variable (raw data) that you are interested
in and the statistic appears.

For example: your data, containing 100 observations, has been typed into
the first column of the spreadsheet (column A). The first cell has the title of the
variable and the actual observations are in rows 2 to 101. To calculate the
arithmetic mean of this variable you go to any cell and declare its contents as
‘=AVERAGE(A2:A101)’. (As you can see Excel calls the arithmetic mean the
‘average’.) The median can be calculated as ‘=MEDIAN(A2:A101)’, the
geometric mean by ‘=GEOMEAN(A2:A101)’ and the harmonic mean as
‘_HARMEAN(A2:A101)".

These and other summary statistics are easily accessed using the ‘Insert function’
(f) facility of the package, mostly in the ‘Statistical’ submenu. Or, once you have
learned a few of the function codes you could just type them in. For instance
‘=STDEV(A2:A101)’ to get the standard deviation reported in an empty cell.
Most of the summary statistics mentioned in this chapter are readily available in
Excel, including skewness (SKEW), kurtosis (KURT) and mode (MODE).
Confidence intervals require more work, but are possible using CONFIDENCE.
The command ‘=CONFIDENCE(0.05,STDEV(A2:A101),100)" will give the
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95% confidence interval of the 100 items of data in column A, the parameters
0.05 and 100 set one minus the size of the confidence interval and the sample
size respectively.

The interquartile range is not given directly in Excel, but it is easily calcu-
lated. ‘=QUARTILE(A2:A101,1)’ will give the value of the first quartile (i.e.
the datum 25% up the data set when sorted) and ‘=QUARTILE(A2:A101,3)’
will give the third quartile (75%). The interquartile range is the difference
between these two values, so in Excel that would be ‘=QUARTILE(A2:A101,3)
— QUARTILE(A2:A101,1Y.

Displaying data: summarizing two or more variables

Box and whisker plots (box plots)

These are a good way of comparing two variables. They allow direct visual
comparison of both the location and the dispersion of the data. An example of
the use of two box plots is shown in Fig. 6.8.

2.0
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Wing length (cm)

0.8 T T
Male Female

Sex

Fig. 6.8 In this SPSS-generated figure the sample of observations of wing lengths of a
moth are divided into two groups by gender. As in most insects, the females are
considerably larger than the males and although there is some overlap in the whiskers
there is no overlap of the interquartile range of the two groups. Note that for the males
the median and lower quartile are superimposed, showing that 25% of the observations
for males were almost of the same value.
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Fig. 6.9 This figure, also generated in SPSS, uses the same moth wing lengths as Fig. 6.8.
The means for males and females are represented by filled squares and the whiskers are
error bars that extend to cover the 95% confidence interval for the mean (i.e. there is a
95% chance that the true mean of the population lies between the extremes shown).
There is no overlap between the whiskers, suggesting that the groups are likely to be
highly significantly different.

Error bars and confidence intervals

A similar way of looking at the same data is to display the arithmetic mean and
some measure of the dispersion of the data. An example of the use of mean and
confidence interval is given in Fig. 6.9. Note that the interquartile range is not
symmetrical about the median (Fig. 6.8) whereas the 95% confidence intervals
(or standard deviation if we had chosen to display that instead) are symmetrical
about the mean (Fig. 6.9).

You can display more than two groups using these methods. They provide a
very powerful method of showing differences and similarities between many
groups. In the example here there is almost no need for any further statistics, as
the difference between males and females is so striking!

Displaying data: comparing two variables

Associations

If two observations are made from a single individual (e.g. the ‘individual’ is a
stream, and the water pH and stream flow have been recorded), before any
statistics are applied it is best to get a ‘feel’ for the observations by a graphical
representation of the data.
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Fig. 6.10 The scatterplot of pH and rainfall from a range of sites shown here has been
created in MINITAB using the default options. Clearly there is no obvious relationship
between the two variables.

Scatterplots

The simplest way to display a relationship between two variables is to use a
plain scatterplot (Fig. 6.10). This assumes that two observations on the same
row in the package are two measurements from the same ‘individual’. An
‘individual’ can be almost anything: sampling station, greenhouse, pair or single
bone.

It is important that all figures should have appropriate axis labels on them.
They should also be accompanied by a figure legend that makes the plot
interpretable without reading the relevant section of the text.

Do not add extra information that is not relevant or appropriate. For example,
many packages offer best-fit lines as a simple option. Do not use these unless
(1) you believe there is a ‘cause-and-effect’ relationship between the variables,
(2) you have used regression and you want a graphical accompaniment, (3) you
intend to use regression and (4) you wish to use one variable to predict the other.

Muliiple scatterplots

A good way to compare observations from two sites where the same variables
have been recorded is to use a multiple scatterplot. The axes will be exactly the
same as for the single scatterplot but each group will be displayed using a
different symbol.

This technique works particularly well for two or three groups and less well
for more than that. Choose symbols carefully to allow the groups to be easily
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Fig. 6.11 In the example shown here two sets of observations from different study areas are
identified with different symbols. A quick glance shows that group 1 is associated with a
higher pH than group 2 but there is no obvious difference between the groups on the
‘rainfall’ axis. An analysis of variance or t-test could be used to determine the statistical
probabilities, but the results would only confirm what is obvious from the scatterplot.

distinguishable and make sure that the figure caption makes it clear which
symbol matches which group (Fig. 6.11).

More sophisticated use of symbols can convey a great deal of information
about several factors on the same scatterplot. For example if the data for two
morphological variables are collected and the individuals are divided into groups
by sex and species then all this information can be incorporated in a single plot.
This can be achieved by using shaded and non-shaded symbols for the two sexes
and different shapes for the two species (see Fig. 9.1 for an example).

Trends, predictions and time series

Lines

These should only be used to join points if there is a reasonable assumption that
observations could be made between the points (Fig. 6.12). This is perfectly
reasonable if the x-axis is temperature with readings made at 15-35°C in steps
of 5°C as intermediate temperatures are valid. However, if the x-axis is number
of eggs in a nest and the y-axis egg weight then it is perhaps unwise to draw a
line linking mean weight at four eggs with mean weight at five as the line will
pass though impossible points.
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Fig. 6.12 This MINITAB-generated example of a line graphs shows a set of 50 readings
of pH made through time at a chemical plant. The time gaps were equal and the

observer thought it valid to join the reading made with lines, as there is a reasonable
expectation that the intervening times would have intermediate levels of pH.
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Fig. 6.13 This figure, generated in SPSS, shows a combination of a line graph and the
mean and confidence interval approach of Fig. 6.9. In this case there are four levels of
the variable shade that can be said to form a valid sequence from light to dark.
Observations of leaf shape (a continuous variable) were taken at each of the four shade
categories and the mean and 95% confidence intervals are plotted here with the means
joined to emphasize the clear trend.
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If there are several observations for each point on the x-axis then it is usually
better to plot the mean or median with a measure of the dispersion at each
point rather than use a scatter of points (Fig. 6.13). The same guidelines for
joining means apply as for joining single observations.

It is very easy to deceive a reader by altering scales. For example, if there is a
slight but steady increase in the concentration of nitrate in a lake over time then
this can be made to look like a rapid increase if the scale on the y-axis starts not
from zero but from a value just below the lowest observed value. This kind of
manipulation of the reader will work particularly well if there is no measure of
the variation given.

Fitted lines

The best way to draw the reader’s eye to a relationship between two variables is
to use a fitted line of some sort. Indeed, an observer can sometimes be fooled
into seeing a relationship in a scatterplot when there is none (Fig. 6.14). For this
reason the use of fitted lines should be restricted to circumstances when the line
is meaningful. The most common use is to illustrate a relationship between two
variables that has been investigated using regression.

One technique is to plot the scattered observations along with the fitted line and
then give more information about the regression in the text or the figure legend.

Confidence intervals

These should always be used to show the reliability of a mean value, as shown
in Figs 6.9 and 6.13. If a regression line has been calculated then it should
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Fig. 6.14 This MINITAB-generated scatterplot of the recovery of biomass after an
extreme event against the diversity index before the event shows a slight but
non-significant trend. However, the addition of the trend line draws the eye and
emphasizes the slight trend, convincing the reader that it is real.
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Fig. 6.15 Here the raw data, regression line and the 95% confidence intervals of the
regression line are all shown along with some of the regression output from MINITAB.
The variable ‘uptake’ measures the amount of drug passed across the stomach lining of
a rabbit at various experimental pH levels. There is a clear relationship: the regression
line slope is significantly different from zero and it explains 57.4% of the variation in
the uptake observations. The 95% confidence intervals are quite close to the best-fit
line confirming that the relationship is robust. Note that the line, quite properly, does
not extend beyond the data as predictions can only be safely made within the range of
the data.

always be displayed with its confidence intervals. This shows the range within
which the line is 95% likely to lie (Fig. 6.15). If the confidence intervals are wide
apart then the line is obviously less reliable.

Displaying data: comparing more than two variables

Associations

It may be tempting to use the full capacity of the graphics on the package you
are using but there is little or nothing to be gained by plotting a multidimen-
sional plot that is impressive to look at but impossible to interpret.

Three-dimensional scatterplots

This type of figure looks impressive but is quite difficult to interpret for several
reasons associated with representing three dimensions in a two-dimensional
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Fig. 6.16 Most statistical packages have three-dimensional plotting ability (this one was
plotted using SPSS). The three-dimensional scatterplot is very difficult to interpret even
when the relationship is quite strong, and impossible when the relationship is weak.
The spikes make the figure very cluttered but are vital to place the point accurately.

medium. First, if there are too many points plotted then those nearest the ‘front’
will obscure those as the back. Second, as the display medium is two-dimensional
all the points need to have ‘spikes’ to anchor them to the x=0, z=0 plane.
Without these spikes then a point near to the front but high on the y-axis will
look identical to one near the back but low on the y-axis. An alternative method
of spiking is to attach all points to the origin. This occasionally is useful, but
normally generates a figure that looks like a bunch of flowers. Finally, there is
often no forced perspective, making the arrangement of the axes seem odd.
Furthermore points at the back are usually the same size as those at the front

and this fools the eye (Fig. 6.16).
Multiple trends, time series and predictions

Muliiple fitted lines

Further information may be conveyed if two lines are fitted on the same graph.
The advantage of this approach is that lines may be compared directly but the
disadvantage is that the message may become confused. I would advise against
a tactic I have seen used increasingly which is to have different y-axes for the
same x-axis so that the two lines being compared fit sensibly. There are two
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problems with this type of graph. First it makes the reader see relationships that
are not really there and second it is often difficult to see which scale applies to
which line.

Surfaces

Many statistical packages include the option to have spectacular three-
dimensional surface plots. I would advise against the use of these in almost all
situations. The problems of all ‘three-dimensional’ graphs on two-dimensional
surfaces apply with the additional problem that the solid or apparently solid
surface totally obscures much of the surface.

The way the points are connected to form the surface is questionable too. For
example, if one or two of the axes have data that are normally distributed this
means that these observations are contributing a great deal of information in the
centre of their range and rather less at the extremes. The surface plot does not
reflect this in most cases (except it often betrays this by tending to have smoother
edges where the surface is extrapolated from fewer points). Therefore the edges
of the surface can be influenced by the extreme points, the very points likely to
be measured with less accuracy.

Fig. 6.17 Possibly even more difficult to interpret than the three-dimensional scatterplot
shown in Fig. 6.16 is the three-dimensional surface plot, such as this one drawn in
MINITAB. This sort of figure can only be interpreted if relationships are very strong or
the smoothing algorithm is so strong that all the variation is wiped out of the data.
Particular problems of three-dimensional surfaces are that the edges tend to be
extrapolated from far fewer data points than the middle and that peaks can obscure a
lot of the surface behind them.
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Fig. 6.18 This three-dimensional scatterplot from Excel shows a common problem with
interpolation of points. The surface is constructed from an array of 100 values arranged
in a 10x10 grid. Unfortunately one value is missing at x=10, y=9 and this value has
been interpreted as having a value of zero.

Remember that a surface, like a joined-up line, can only be used if both the
‘x’ and ‘y’ (or ‘z’) observations can reasonably be expected to have possible
intermediate values (Fig. 6.17). A problem with the interpolation of missing
data points is shown in Fig. 6.18.



The tests 1: tests to

look at differences

The tests in this chapter are presented in roughly the order they appear in the
key (see Chapter 3).

Do frequency distributions differ?

Questions

There are two basic types of question that can be asked.

1 Does one observed set of frequencies differ from another?

2 Do the observed frequencies conform to a standard distribution?

In the first case the test becomes an analogue of a two-sample test of difference,
such as the t-test. In the second it is a way of testing observations against expected
frequencies, such as in plant-breeding crosses when particular ratios of pheno-
types are expected or to test whether organisms are occurring at random by
testing against the Poisson distribution. The G-test, chi-square goodness of fit,
Kolmogorov—Smirnov, Shapiro-Wilk and Anderson-Darling tests are the most
commonly employed tests to answer these questions and are described below.

G-test

In situations where you have observed frequencies of various categories and
expected proportions for those categories that were not derived from the data
themselves then the G-test should be the preferred statistic to use. However,
it is not many years since this test was shown to be superior to the traditional
chi-square goodness of fit approach on theoretical grounds. Consequently it is
not supported by any of the packages considered in this book.

If your package supports the G-test then use it and its associated correction
factor, the Williams’ correction.

In the G-test the ratio of the observed and expected frequencies is calcu-
lated. The natural log (In or log ) of this ratio is calculated and these values are

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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multiplied by the number observed, summed, then doubled. This value of G is
then compared to a chi-square distribution with one fewer degrees of freedom
than the number of categories.

An example

A dihybrid cross of sweet peas has four categories of plant types with an
expected ratio of 9:3:3:1. This ratio was not generated by the data so when the
data are collected it should be compared to the expected values using the G-test.
Two hundred plants were collected. The number of plants in each of the four
categories is given below.

Tall and pink Tall and white Dwarf and pink Dwarf and white

108 35 46 11

This test is not available in SPSS.

B} This is quite a simple test and can be achieved in a few steps in R.

1 Enter the data into a variable, here called ‘obs’:
> obs<-(c(108,35,46,11))
2 Then enter the expected frequencies into a variable, here called ‘expected’:
>expected<-(c(9,3,3,1))
3 These expected frequencies need to be converted to expected frequencies
accounting for the size of the sample, so each value in ‘expected’ is divided by
the total of the values in ‘expected’ and this is multiplied by the total number
of observations:
>expected_freqg=(expected/sum(expected) *sum (obs) )
4 This is then converted to a log ratio stored in a variable called ‘Inratio’:
>1lnratio=1log (obs/expected_freq) *sum(obs)

5 To check all is well the values held in ‘Inratio’ can be displayed:

> lnratio
[1] -4.408775 -2.414751 9.397821 -1.406167
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6 The result of the test is the absolute value (i.e. it must be positive) of double
the sum of the values in ‘Inratio’; here I've called it ‘g’

>g=2*abs (sum(lnratio) )

7 This value is then compared to a chi-square distribution with degrees of free-
dom one fewer than the number of categories. In R the function ‘pchisqg ()’ is
used for this. This function requires two values: the value to be compared and
the degrees of freedom. The result is the P-value:

>1-pchisg(g, 3)

Remember that these instructions only apply when there are four values and
you should adjust to accommodate different numbers of categories.

This test is not available in MINITAB.
As this is a relatively simple calculation it is ideal for a spreadsheet like

Excel. The most likely source of error when carrying out a G-test is in the
calculation of the expected frequencies. The total of the expected frequencies
should be exactly the same as the number observed.

1 Label five columns as: observed, expected ratios, expected frequencies, ratio
and In ratio.

2 Enter the four observed values in cells A2-A5. (Your data may have more
than four categories and therefore all references to row five here should be
adjusted to your data set.)

3 Enter the values 9, 3, 3 and 1 in cells B2-B5.

4 In cell A7 use ‘=sum(A2:A5)’ to sum the number of observations.

5 Copy cell A7 across to B7: ‘=sum(B2:B5)’.

6 In cell C2 the expected frequency of tall and pink plants is needed. This
should be 9/16 of the total number of observations. Use ‘=B2/B$7*$A$7’,
which will give 112.5 in this example, and copy this cell down to C5. Note that
the ‘$’ are important as they hold the row or column or both in place when
copying. ‘F4’ can be used to cycle through $ options.

7 Calculate the ratios in D2 as ‘=A2/C2’. Copy this cell down to cell D5.

8 Calculate the natural logs and multiply by the number of observations (A2)
in E2 as ‘=A2*In(D2)’. Copy down to cell E5.

9 Sum the values in column E in cell E7 and double it: ‘=2*sum(E2:E5)’. The
example should give a value of 2.336. If your data gives a negative value adjust
the contents of cell E7 to ‘=-2*sum(E2:E5)’ and the value should become
positive.

10 The value in E7 should be looked up on a chi-square table. Excel does this
with ‘=CHIDIST(E7,3)’ (or select CHIDIST from the ‘Paste function’, Statistical
submenu). In this example there are three degrees of freedom. The result is
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Fig. 7.1 Calculating the value of G using Excel.

P=0.505611, so the null hypothesis is not rejected (see Fig. 7.1). Your calcula-
tion should have one degree of freedom fewer than the number of categories.
11 Save your Excel sheet as it will be easy to recycle for future G-tests by alter-
ing the values in columns A and B (where necessary). If more categories are
required remember to adjust all the summing steps to cover the required ranges
and adjust the degrees of freedom.

Chi-square test (y?)

Often known as the chi-square goodness of fit, this test is one of the most
widely used in the whole of biology. It is also the statistical test you are most
likely to be familiar with. You will usually present the data in a table showing
the observed and expected frequencies for various categories. These categories
can be single outcomes or groups of possible outcomes. It is customary to use
grouping of categories to ensure that none of the expected values is less than 1
(some authors, erring on the side of caution, suggest 5). The expected values can
be derived from a distribution such as the Poisson or negative binomial, they can
assume that all categories are equally likely (a flat or rectangular distribution),
they can be derived from a specific null hypothesis of ratios or they can be
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derived from another set of data. In all cases the null hypothesis (H,) will be
that the observed and expected frequencies are not different from each other.
The chi-square test may also be used as a test of association (see Chapter 8).

An example

A very common starting point for investigations in biology is to determine
whether events or observations are occurring at random. If events are truly ran-
dom then they should follow a Poisson distribution (see Chapter5 for more
details). The chi-square test allows you to compare observed data with the
expected data if following a Poisson distribution with the same mean. In this
case the number of lice found on adult char is recorded. All observations were
taken from a single catch of 98 fish. If the lice attach themselves to the fish at
random then they will follow a Poisson distribution and the chi-square will not
be significant (i.e. supporting the null hypothesis that lice attack fish at ran-
dom). If the result is significant this indicates that lice do not attack randomly
and a new hypothesis should be formulated.

Note that in this instance we are comparing a set of observed frequencies
against a set of expected frequencies derived from a Poisson distribution that
has the same mean as the observations. Therefore the expected frequencies are
not independent of the observed and this loses us a degree of freedom.

No. lice/fish 0 1 2 3 4 5 6 7 8+
No. observations 37 32 16 9 2 0 1 1 0

First I should point out that processing this type of data for a goodness of
fit chi-square in SPSS is not easy unless you wish to fit the distribution to a
uniform one (i.e. all categories are expected to have the same number of
observations). If you have this sort of data use the Kolmogorov—Smirnov test to
answer the question in SPSS. However, I will go through the procedure anyway
assuming you don’t know how to calculate Poisson ‘expecteds’ by hand (perhaps
the faint hearted should move on to the Kolmogorov—Smirnov test now!).

1 Make sure that the data are in a single column of the actual data, not the
frequencies. In this case there will be 98 rows in the data set; one for each fish.
Label this column ‘no_lice’.

2 Determine the mean number of lice per fish using the ‘Analyze’ menu, then
‘Descriptive Statistics ..." and selecting either ‘Descriptives...” or ‘Frequencies...
before moving ‘no_lice’ into the ‘Variable(s)’ box. The output will confirm the
mean as 1.14. The next steps show how to calculate the expected frequencies
in SPSS. If you can do this by hand or in a spreadsheet I suggest you do so and
skip directly to step 6.

3 Generate a new column with all the expected frequencies in it (e.g. 0, 1, ... 7)
in separate rows. Label this column ‘freq’.
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4 Use the ‘Compute Variable...’ which is under the ‘Transform’ menu to bring
up a dialogue box. In the “Target variable’ box enter, say ‘expl’. Select ‘All’ or
‘PDF & Noncentral PDF’ in the ‘Functions group:” box. Then scroll down the
list of functions until you reach ‘Pdf.Poisson’. (Note: PDF stands for probability
density function.) Select this and move it into the ‘Numeric Expression:” box
with the up arrow. Replace the second question mark with the mean you cal-
culated in step 2 (i.e. 1.14 in the example). The first question mark (‘q") should
be replaced with the name of the variable you created in step 3 (i.e. ‘freq’). The
expression should be ‘PDF.POISSON(freq,1.14)’. Click ‘OK’. A new variable
will appear on the spreadsheet with numbers starting from 0.32. This first
number is the probability of getting a zero in a Poisson distribution with a
mean of 1.14.

5 One more calculation step is required. Go to the ‘Transform’ menu and
select ‘Compute Variable...” again. Insert a new label in the ‘Target variable’,
say ‘expected’ as this is going to be the true expected value. Select ‘expl’ from
the list on the left and move it to the ‘Numeric expression’ box. Then add
*98’ (or whatever your sample size is if you are not using the example)
outside the parentheses. This will multiply the values by the total number
of observations, turning your expected frequencies into expected numbers
of lice.

6 You will notice that all expected frequencies for more than four lice per
fish are less than one and should be grouped together to form a category
of ‘four and above’. Write down the expected frequencies for the five
categories.

No. lice per fish 0 1 2 3 4+
No. observations 37 32 16 9 4
Expected no. observations 31.3 354 20.4 7.8 2.8

7 As all values above three lice per fish have been grouped for expected fre-
quencies, this must now be done for the actual data. In SPSS you can either do
it by hand or use the ‘Recode’ option under the ‘Transform’ menu. Selecting
either ‘Recode into same variables...’ (over-writing the original data) or
‘Recode into different variable.. .. If you choose the latter, move ‘no_lice’ into
the ‘Numeric variable — output variable’ box. Then type a name for your new
variable in the ‘Output variable, Name:” box and click ‘Change’. Your new
name appears after the old name in the main box. Then click ‘Old & New
Values.... This brings up a bewildering set of options that are actually
extremely useful in SPSS. In the ‘Old value’ section on the left select ‘Range,
value through highest’. Put a 4 in the box. Then in the ‘New value’ section on
the right put a 4 in the ‘value’ box and click ‘add’. This will put ‘4 thru Highest
— 4 in the ‘old — new’ section (meaning that all 4s or higher will become 4s).
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Finally click ‘All other values’ on the left, ‘copy old values’ on the right, and
‘add’ to keep the rest as they were. ‘ELSE — Copy’ appears in the ‘old — new’
box. Click ‘Continue’ here and then ‘OK’ in the next window to create the
new variable.

8 Finally, choose ‘Analyze’, ‘Nonparametric tests’ and ‘Chi-Square...’ to bring
up the ‘Chi-Square Test’ window. Move the variable you created in step 7 into
the ‘Test variable list:” box. Unfortunately you have to enter the expected fre-
quencies one at a time. Click on ‘Values:” in the ‘Expected Values’ area and enter
the expected frequencies, starting at the one for zero (i.e. 31.3 in the example)
and clicking ‘add’ after each one before clicking ‘OK’ to run the test. This is the
output you should expect.

Frequencies

Chi-Square Test

no_lice
Observed N Expected N Residual
.00 37 314 5.6
1.00 32 35.5 -3.5
2.00 16 20.5 -4.5
3.00 9 7.8 1.2
4.00 4 2.8 1.2
Total 98
Test Statistics
no_lice
Chi-Square 3.0022
df 4
Asymp. Sig. .557

a. 1 cells (20.0%) have expected frequencies less than
5. The minimum expected cell frequency is 2.8.

The data have been reduced to just five categories and each has an associated
expected frequency. The residual is the difference between observed and
expected. At the bottom is the actual chi-square statistic, the associated degrees
of freedom (4 in this case as, once the categories had been clumped, there were
five categories) and finally the significance value (P-value).
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Note: as the mean of the distribution we are comparing to our data was calculated from
the sample we should lose a further degree of freedom to give a total degrees of freedom
of 3. The package does not account for this as it is calculated before the test is applied
and therefore SPSS ‘knows’ nothing about it.

Despite the fact that there are more high values and zero values than you
would expect (indicative of a clumped distribution) the probability is well
above 0.05. This indicates that the deviation from the Poisson expectations is
non-significant and therefore we have no reason to reject the null hypothesis
that lice attack fish at random in this population.

] As with SPSS and MINITAB the default chi-square test in R, ‘chisq.
test ()’, assumes that the number of observations per category is equal. There
are several ways to tell it otherwise, and here I'm going to avoid using a predefined
chi-square function as it gives more control over the amalgamation of categories.
To generate the expected values for the table we will make use of the function
‘dpois ()’ that gives the proportion of observations with a given value in a
Poisson distribution with a given mean. For example, >dpois(1,2.2)will
return 0.2437699, which is the proportion of values that will be 1 in a Poisson
distribution with a mean of 2.2.

1 First make a variable that holds the integers from zero to eight representing
the number of lice: > number<-c (0:8)

2 Then input the numbers of observations. Perhaps these will be held in a text
file and imported into R, but in this case I'll assume that the values from the tally
table need to be input to R manually: > obs<-c(37,32,16,9,2,0,1,1,0)

3 We need to know the total number of observations and the total number of
lice to calculate the mean number of lice per fish. I'll do this in one go in R, then
confirm the correct value:

>meanlice=sum(obs*number) /sum(obs)
>meanlice
[1] 1.142857

4 Now we know the mean number of lice per fish we can calculate the expected
proportion of fish that will have zero, one, two, etc. lice using ‘dpois ()’, which
assumes that lice attack fish at random leading to a Poisson distribution. As what
is required is an expected number of fish, the proportions are multiplied by the
number of observations:

>expected_freg=sum(obs) *dpois (number,meanlice)
>expected
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[1] 31.2526 35.7175 20.4100 7.7752 2.2214 0.5078 0.0967
[8] 0.0158 0.0023

5 In this example there are several categories that have very low values. The
advice given for chi-square tests is that no expected values should be less than
1 and no more than a quarter of the expected values should be less than 5. This
means only the first four or five categories should be used in this case. It is
important that the sum of the values in the observed and expected variables are
the same, so care should be taken when working out the value in the ‘four and
above’ category. Here we know that the total number of observations is 98, so
the value in ‘four and above’ should be the sum of the values in categories O to
3 taken away from 98, or ‘sum (obs) .

>sum (obs) -sum (expected_freqg[l:4])
[1] 2.8444

This can be inserted as the fifth element in the ‘expected_freq’ variable:
> expected_freqg[5]=sum(obs)-sum(expected_freqgl[l:4])

6 Now we have five categories of expected values, O to 3 and ‘4 and above’. This
needs to be reflected in the observed data as well. So the value of the fifth ele-
ment of the obs variable should be the sum of all observations of four and above.
Or, it could be done by subtraction from the total number of observations:

>obs[5]=sum(obs)-sum(obs[1:4])

This means that the value of the ‘4 and above’ category is now 4.

7 To calculate the value of chi-square the simple formula of the sum of
(observed-expected) squared over expected is implemented for the first five
elements of these variables.

>v=(obs-expected_freq) "2/expected_freqg
>chisquare=sum(v[1:5])

>chisquare

[1] 3.059116

8 Finally we need the P-value associated with a chi-square value of 3.059116
with three degrees of freedom. The degrees of freedom is three rather than four
because there has been some clumping of categories. ‘pchisq ()’ returns the
cumulative probability of getting a chi-square value of that or lower, so to cal-
culate the P-value we need ‘1-pchisqg()’:

>1-pchisg(chisquare, 3)
[110.3862
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Here the P-value is well above 0.05 so we don’t reject the null hypothesis that
the frequencies of number of lice per fish follows a Poisson distribution.

Calculating a goodness of fit to a Poisson distribution is surprisingly
awkward in MINITAB, although not quite as awkward as in SPSS. However, it is

a test that you will wish to carry out in many circumstances.

1 Make sure that the data are in a single column of the actual data, not the
frequencies. In this case there will be 98 rows in the data set: one for each fish.
Label the column ‘No lice’.

2 Determine the mean number of lice per fish using the ‘Stat’ menu, then
‘Basic statistics’, then ‘Display Descriptive statistics’. Move ‘No lice’ into the
‘Variables’ box, either by double clicking on the variable name or using the
‘Select’ button. The output will confirm that there are 98 observations and give
the mean as 1.143.

(Or; if the command interface is enabled, type ‘Describe ‘No lice” or ‘Describe
C1’ at the MTB> prompt. Or you can input commands using ‘Edit’ menu then
‘Command Line Editor'.)

The next steps show how to calculate the expected frequencies for a Poisson
distribution in MINITAB. If you know how to do this by hand or in a spread-
sheet you can skip directly to step 6.

3 First you should generate a table of the tallied observations: Go to the ‘Stat’
menu, then ‘Tables’ then ‘Tally individual variables...”. Move ‘No lice’ into the
‘Variables’ box and make sure that the ‘Counts’ box is checked. Click ‘OK’. This

output will appear in the ‘Session’ window:

Tally for Discrete Variables: No lice
No lice Count
0 37
1 32
2 16
3 9
4 2
6 1
7 1
N= 98

Note that as there were no fish with five lice, there is no count for five in the
table. Now you can either cut and paste the two columns of figures from the
‘Session’ window into columns C2 and C3 of your MINITAB spreadsheet
(remembering to click on the ‘Use spaces as delimiters’ option) or you can type
the numbers in directly.

(Or type ‘Tally c1;” at the MTB> prompt, followed by ‘Store ¢2 ¢3.” at the SUBC>
prompt. Remember to type a semicolon at the end of MTB> command if you want
to bring up the SUBC> prompt.)
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Fig. 7.2 Generating expected values using the ‘Tally’ command and Poisson probabilities
in MINITAB.

4 Now we need to generate expected numbers of lice for a Poisson distribution
with the same mean as the sample. Go to the ‘Calc’ menu, then ‘Probability
distributions’ and then ‘Poisson...". In the dialogue box type the sample mean in
the ‘Mean:’ box, type ‘c2’ in the ‘Input column:’ box and ‘c4’ in the ‘Optional
storage:” box. If you don’t select a storage column the output only goes to the
‘Session” window (Fig. 7.2). Click ‘OK’.

(Or type ‘PDF c2 c4; at the MTB > prompt, followed by ‘Poisson 1.143." at the

SUBC > prompt. Replace 1.143 with the mean of your sample. Or you can input
commands using ‘Edit’ menu then ‘Command Line Editor’.)
5 To convert the probabilities generated into numbers you need to multiply by
the total number of observations in the sample (98 in this example). Go to the
‘Calc’ menu, then ‘Calculator...”. In the dialogue box type ¢5 in the ‘Store result
in variable:’ box. Then type ‘c4 * 98’ in the ‘Expression:’ box (replacing 98 with
the number of observations in your sample). Click ‘OK’.

(Or type ‘Let c5=c4 * 98’ at the MTB >prompt.)

6 Chi-square tests should not have expected frequencies that are less than one.
In the example the expected frequencies for 6 and 7 are both less than one. Also,
because there were no fish with five lice in the example there is no expected
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frequency for 5 in the column. In this example the best strategy is to pool all
observations of 4 or more into a single observed and expected value. You can do
this in several ways, either on a calculator, by hand or by using the ‘Calculator..
from the ‘Calc’ menu, selecting a row and typing the sum required. In this
example selecting row 5 and typing ‘98-31.248-35.717-20.412-7.777’ in the
‘Expression box’. The numbers are the expected frequencies of 0, 1, 2 and 3 lice
per fish respectively. The result should be 2.85, being the expected number of
times, out of 98, that a Poisson distribution with a mean of 1.143 would pro-
duce a number of 4 or more.

[Or type ‘Let c6(5)=98-31.248-35.717-20.412-7.777" at the MTB> prompt.

Replace c¢6 and (5) with the column and row you require and the numbers with
those appropriate for your data.]
7 You must amalgamate the observed frequencies in exactly the same way as
the expected. In this case there are a total of four observations of 4 or more lice
per fish. You should now have one column of expected frequencies with no
values less than one and one of observed.

In the lice and fish example the following columns should result

C6 Cc7
Expected Observed
31.2484 37
35.7169 32
20.4122 16
7.7771 9
2.8460 4

8 Finally we reach the chi-square test itself. There is no way to reach the
required test using the menus. You will have to make sure the command line is
enabled (from the ‘Editor’ menu select ‘Enable commands’). Type at the com-
mand line (MTB>) the following: ‘LET K1=SUM((C7 - C6)**2/C6)’ (assum-
ing that your expected values are in C6 and observed in C7) followed by
‘PRINT K1’ to see the result. For the example this will return the value of
‘3.059’ (slightly different numbers will be the result of rounding in the
calculations).

9 Finally, to determine whether this is significant or not (i.e. do we reject the
null hypothesis that the lice are attacking the fish at random) we need to be sure
on the degrees of freedom (d.f.). In the example there were five possible values
(so 4d.f) but the mean value of the Poisson distribution we are comparing
against was taken from the data we are using so we lose a further degree of
freedom (leaving 3d.f.). You can either look up the value on a table in a statistics
book or you can use the command line in MINITAB using the following
commands:
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MTB > cdf k1 k2;
SUBC> chisquare 3. (replacing 3 with the degrees of freedom required)

MTB > let k3=1-k2
MTB > print k3

This will give you the output:

Data Display
K3 0.382556

This value is well above the critical 0.05 level. Therefore we have no reason to
reject the null hypothesis that lice attach fish at random in this population. If
you look up the value in a statistics book you will see that the chi-square value
required to reach the critical level of 0.05 for 3d.f. is above 7 and here the Chi-
square value was only just above 3.

Most of the calculation steps are fairly straightforward and therefore ideal

for a spreadsheet like Excel. Using the same example as for SPSS (above) I will
assume that the data are available as a frequency table rather than a column
containing all 98 observations. If they are not then you can generate a frequency
table from the raw data using the ‘Frequency’ command (or by hand). The
number of lice is in column A and the frequencies are in column B.
1 To calculate expected values for a Poisson distribution the only parameter you
need to know is the mean. To find the mean of data in a frequency table you first
need to find the product (what you get when you multiply the category value
by the number of observations). If you have input the categories in column A
with a title, number of observations in B with a title then go to cell C2 and type
‘=a2*b2’. In this example this will be zero. Then find all the other products by
dragging the little square in the bottom right corner of the cell down to the bot-
tom of the list.

Add up the number of observations in the B column by typing ‘SUM(b2 :b9)’

in cell B11 and dragging this across to the C column to add up the products.
Then divide the products by the number of observations to obtain the mean by
typing ‘=c11/b11’ in cell C13. Always use labels in other cells to make every-
thing clear. In this example the mean should be 1.14.
2 Calculation of the expected number of observations is surprisingly easy in
Excel. Move to cell D2 (for convenience) and click on ‘Insert function’. Select
category ‘Statistical’ and then POISSON’ from the very long list of options you
are offered; click ‘OK’. A window with three lines to fill appears. In the first ‘X’
line use the cell number of the category, in this case A2. In the second type in
the mean (1.143); don’t use the cell number. Type a zero in the bottom line.
This tells Excel that you do not want the cumulative probabilities. Then click on
‘OK’. The probability of getting a zero in a Poisson distribution with a mean of
1.143 appears in the selected cell (just under 0.32).
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Fig. 7.3 Calculating the mean number of lice per fish from a table of frequencies in
Excel. (Note: the numbers and letters around the sides of the data are the Excel row and
column labels.)

3 Step 2 calculated the probability of getting a particular number of lice. What
is needed is the expected number of observations. To get this you must multiply
the probability by the number of observations, 98 in this example. To do this
make sure that cell D2 is selected and add a ‘*98’ to the end of the formula,
giving: ‘=POISSON(A2,1.143,0)*98’. Or, to make the calculation more versa-
tile, use the cell where the total number of observations is calculated (b11 in the
example, so $b$11). Press return and the number in the cell becomes the
expected number of observations. Remember to replace 1.143 with your mean
and 98 with the number of observations in your sample or use cell numbers
anchored with $.

4 Select D2 again and drag its contents down the column (click on the little
square in the bottom right corner of the cell and hold the mouse button as you
move mouse to highlight all cells to D9 then let go). The column fills with the
expected number of observations for each of the categories in column A. Label
column D ‘expected’. See Fig. 7.3.

5 Some of the expected values are less than one and need to be amalgamated.
In this case it is best to have a category for lice numbers of 4 and above. Copy
the observed data into column E but replace the number of times four lice were
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observed with the number of times four or more lice were observed. This is a
total of four observations in this case. Label column E ‘observed’.

6 You also have to amalgamate the expected frequencies so that cell D6 holds
not the expected number of fours but the expected number of ‘4 or mores’.
There are several ways of achieving this but probably the easiest is to start with
the 98 total and take off the expected numbers of 0, 1, 2 and 3. Type in cell D6
‘=98-D2-D3-D4-D5’. This should give you an expected value of 2.845.

7 Chi-square uses the formula: ‘(observed—expected)’/expected’ for each category
and then sums these to produce the final chi-square statistic. The formula is often
quoted as (O-E)%E. In this example the observed values should be in column E
and the expected in column D. So in cell F2 type in the formula: ‘=(E2-D2)"2/
D2’. Once you have done that copy it down the F column to F6.

8 You should have five numbers in column F. These need to be added up to give
the final chi-square value. Type in any clear cell: ‘=sum(F2:F6)’. For conven-
ience I used cell F8. You should get the value: 3.0599. This is the chi-square
value that you would quote in a report.

9 Finally, what is the probability of getting this value of chi-square (or a higher
value)? Go to any clear cell. Click on ‘Paste function’ and select ‘CHIDIST’
from the list (if it does not appear immediately it can be selected from either
the ‘Statistical’ list or the ‘All’ list). In the first, X’, box you input the chi-square
value (or the cell that you used in step 8). In the second box you need to put
the degrees of freedom. In this case there were five categories, giving four
degrees of freedom, but the Poisson distribution we are comparing against has
its mean taken from the frequency data, which loses another degree of freedom
(Fig. 7.3). Therefore you should have three degrees of freedom. Input three and
you should get a probability of 0.38. This value is well above 0.05 so you can
infer that the distribution of lice on fish is not significantly different from ran-
dom (Poisson distribution). We have no reason to reject the null hypothesis that
lice attack fish at random in this population.

Kolmogorov—Smirnov test

The Kolmogorov—Smirnov test for goodness of fit has a variety of uses for large
samples of continuous data. There are two main forms, called the one-sample
test and two-sample test. Both are used to compare two sets of data to deter-
mine whether they come from the same distribution. The one-sample version is
more commonly used and compares experimental data with expected distribu-
tions. The expected distribution may be derived from the data or may be com-
pletely independent of them. For example, you may use the test to determine
whether a set of tarsus-length data differs from a normal distribution with the
same mean and variance as the sample data before you use parametric analysis
on it. The two-sample test can be used to compare a set of egg-weight data from
a population of ducks with a set from another site, asking whether the distribu-
tions are the same.
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An example

The weight in grams is recorded for a sample of 48 mice. This sample is part of
an experiment and the researchers wish to know whether the weights are dis-
tributed normally before they go on to use parametric statistics. The data are
shown here.

12.5 13.5 13.2 12.5 12.1 12.6 12.1 12.8
14.2 13.2 13.8 12.0 12.5 12.1 12.8 12.9
12.6 12.8 12.5 13.1 12.4 13.5 13.4 13.6
13.0 14.1 12.6 13.2 13.8 13.8 13.9 14.0
14.1 12.1 12.9 14.5 13.2 14.1 12.5 12.5
15.0 12.6 13.0 13.5 14.0 12.9 12.4 12.8

This is a very simple test to access in SPSS. Ensure all the data are in a

single column. Select the ‘Analyze’ menu, then ‘Nonparametric Tests’, then
‘1-Sample K-S... . In the dialogue box move the name of the column you are
testing into the ‘Test Variable List:” box. Make sure that the ‘Test distribution’
has ‘Normal’ selected. Then click ‘OK’. The following output will appear:

NPar Tests

One-Sample Kolmogorov-Smirnov Test

mouse_wt

N 48
Normal Parameters?® Mean 13.108
Std. Deviation 7178

Most Extreme Differences  Absolute 115
Positive 115

Negative -.082

Kolmogorov-Smirnov Z 795
Asymp. Sig. (2-tailed) .552

a. Test distribution is Normal.
b. Calculated from data.
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This output confirms the test and variable used, gives statistics: number of
observations (‘N"), mean and standard deviation. The last two lines of the out-
put table refer to the test itself. The only important bit is the ‘Asymp. Sig.
(2-tailed)’. If this number is less than 0.05 then the distribution of the data is
significantly different from normal. In this case the value is 0.552 which is well
above the critical 0.05 so we have no reason to suppose that the distribution of
the data is significantly different from a normal distribution.

B The Kolmogorov—Smirnov test function in R is ‘ks.test()’, but as
the Kolmogorov—Smirnov test has several incarnations available in R it is
important to specify carefully exactly what test is to be carried out. In this
example the data is held in ‘varl’ and it is being compared with a normal
distribution with the same mean and standard deviation. So R is asked to derive
and use those values:

> ks.test (varl, “pnorm”, mean=mean (varl),
sd=sqgrt (var (varl) ) )

One-sample Kolmogorov-Smirnov test

data: varl
D=0.1147, p-value=0.5523
alternative hypothesis: two-sided

Warning message:

In ks.test(varl, “pnorm”, mean=mean (varl),

sd=sqgrt (var(varl) ) ) : cannot compute correct p-values
with ties

The output gives the output statistic ‘D’ and then a P-value associated with that
statistic. Here it is 0.5523 which is well above 0.05, so we accept the null
hypothesis that there is no difference between the observations and a set of
random observations drawn from a perfect normal distribution with the same
mean and variance. There is a warning message that appears often with ranked
tests when there are tied values (i.e. two or more identical values in the data
set). You should not be concerned unless there are many tied values, in which
case the data may not be appropriate for a ranked test, or the P-value is very
close to 0.05, where you might want to measure with sufficient precision to
remove the ties.

The Kolmogorov—Smirnov is a very simple statistic to reach if you are
testing a single column to see whether it follows a normal distribution or not,
although the Anderson-Darling test, considered below, is easier to reach.

Ensure all the data you wish to test are in a single column. Select the ‘Stat’
menu, then ‘Basic statistics...’, the ‘Normality Test...". In the dialogue box move
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the column you wish to test into the ‘Variable:’ box and select the Kolmogorov—
Smirnov test. Then click ‘OK’.

The output is a graph that shows a perfect normal distribution of data as a
straight line and your data as a series of dots. The test compares the dots with
the line. A box next to the graph has the basic statistics of the data, a value for
the Kolmogorov—Smirnov test and then a P-value. If the P-value is less than
0.05 then the distribution is significantly different from normal. In this case the
value is given as >0.15 so it is not significantly different from normal.

The Ryan—Joiner test for normality and the Anderson—-Darling test are also
offered in this dialogue box. Be warned that different normality tests will often
give quite different results.

(Or, if the command interface is enabled, at the MTB> prompt in the session
window type ‘NormTest C1;’ then at the SUBC> prompt type ‘KSTest.” Or you can

input commands using ‘Edit’ menu then ‘Command Line Editor’.)

There is no direct method for performing the Kolmogorov—Smirnov in

Excel.

Anderson—Darling test

The Anderson-Darling test is one of many procedures commonly encountered
to test whether a set of data follows a normal distribution or not. The P-value
reported is the probability of the data being normally distributed. If P<0.05 the
data deviated significantly from a normal distribution and parametric tests
should not be used without making suitable corrections or transformations.

The Anderson-Darling test is not available in this package.
B The Anderson-Darling test is not easily available in R.

There are two routes to the Anderson-Darling in MINITAB. The first
is described above for the Kolmogorov—Smirnov test. The Anderson-Darling
test is also part of the extensive ‘Graphical summary’ output for simple variable
descriptions. The data should be in a single column. From the ‘Stat’ menu select
‘Basic Statistics’ then ‘Graphical summary’. Move the name of the column
containing the data into the ‘Variables:” box. Click ‘OK’.

An output containing several graphs and many descriptive statistics appears.
The first part of the numerical output give the statistics for the Anderson—
Darling test (‘A-squared’) followed by the P-value associated with the statistic.
If the P-value is less than 0.05 the data are significantly different from a normal
distribution and it is inadvisable to use parametric statistics.

Tests of normality are not available in this package.
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Shapiro-Wilk test

This is another commonly encountered normality test.

The Shapiro—Wilk test is not available in this package.

B} This is the easiest-to-access normality test in R, here assuming that the data

are in a variable ‘'V1’:

> shapiro.test (V1)
Shapiro-Wilk normality test

data: V1
W=0.9533, p-value=0.05407

This indicates that the null hypothesis is very close to rejection and caution
should be taken when proceeding with tests that make an assumption of a nor-
mal distribution. Note that the Kolmogorov—Smirnov test on the same data
gave a P-value of 0.5523, well away from borderline significance.

The Shapiro-Wilk test is not available in this package.

Tests of normality are not available in this package.

Graphical tests for normality

It’s often a good idea to use a visual fit of data to a normal distribution to con-
firm the results of one of the goodness of fit tests described above.

An easy graphical way to compare a data set to a distribution is to generate
a histogram and then add the normal curve with the same mean and standard
deviation as the data. From the ‘Graphs’ menu select ‘Chart Builder...". In the
‘Gallery’ tab select the ‘Histogram’ option and then drag the simple histogram
to the ‘Chart preview’ area. Drag the name of the variable you want from the
‘Variables:” list to the “X-Axis?’ section of the preview chart. Now click the
‘Element Properties...” button and in the window that appears click ‘Display
normal curve’ and then the ‘Apply’ button. Close the window and click ‘OK” in
the ‘Chart Builder’ window.

Note that if you want a different distribution, SPSS can provide many options.
Edit the chart in the ‘Output’ window by double clicking on it. Remove the
existing distribution line, then use the ‘Elements’ menu to select ‘Distribution
curve’ and you will be offered a choice of lines.
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Normal Q-Q Plot

Sample Quantiles
13.5 14.0 14.5 15.0
1 1 1 1

13.0
I

12,5
I

O ooo

12.0
I
o

Theoretical Quantiles

Fig. 7.4 A Q-Q plot produced in R. (Note that where there are several observations
with the same value this forms a horizontal row of symbols.)

B An casy way to visualize a fit is to use a ‘quantile-quantile plot’ with plots the

proportion of observations of a set distribution on the horizontal axis against
the observed data on the vertical axis (see Fig. 7.4). In R the function ‘ggline ()’
takes the mean and standard deviation from the variable stated. In this case the
mouse-weight data is in variable ‘V1’:

> ggnorm (V1)
> ggline (V1)

Another simple method in R superimposes a normal curve with mean and vari-
ance taken from the data on a histogram of the observations. A cumulative
density plot of the observations and a normal distribution can be achieved by
first setting a suitable range of values that will need to be plotted and putting
them into a variable x’:

> x<-seqg(11.5, 15.5, 0.1)

where ‘seq ()’ gives the starting point, end point and the spacing. Next make a
cumulative density plot of the data in V1 and then use ‘lines ()’ to add a
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cumulative normal distribution with the mean and standard deviation taken
from the observations and plotted at all points of x:

> plot (ecdf (V1))
> lines(x, pnorm(x, mean=mean (V1l), sd=sqgrt(var(vl))),
1lty=3)

or more tidily as:

> plot (ecdf (x), do.points=FALSE, verticals=TRUE)
> lines(x, pnorm(x, mean=mean (V1l), sd=sqgrt(var(Vvl))),
lty=3)

where ‘1ty=3" simply described the pattern of the line.

There are several graphical methods available in MINITAB. For a simple
histogram with a normal distribution superimposed on it go to the ‘Stat’ menu,
then ‘Basic Statistics...” then ‘Graphical Summary’ and the histogram of the
data is the first part of the output. To get a window with only the histogram and
normal curve go to ‘Stat’ menu, then ‘Basic Statistics’, then ‘Display Descriptive
Statistics...”. Move the variable of interest into the ‘Variables:’ box then click on
‘Graphs’ and select ‘Histogram of data, with normal curve’.

No simple graphical methods for testing normality are available in Excel.

Do the observations from two groups differ?

The two groups can be paired, repeated or related samples or they can be inde-
pendent. Paired measures are considered first.

Paired data

Paired samples or paired comparisons (paired data; a.k.a. related or matched data)
occur when a single individual is tested twice (e.g. before and after) or a sampling
station retested. Another possible use occurs when an individual is, or individuals
of a clone are, divided and then subjected to two treatments. Three tests are
considered below: the paired t-test, Wilcoxon signed ranks test and the sign test.

Paired t-test

The data must be continuous and, at least approximately, normally distributed.
The variances of the two sets must be homogeneous (this can be tested by the
Levene test). The null hypothesis is that the there is no difference between the
two columns and they could come from the same data set.
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An example It is suggested that the building of a power station will affect the
amount of particulate matter in the air. However, there are only three readings
available for the month before the project got underway (measured as parts per
million, or ppm). The sites where the three readings were taken were revisited
once the station was complete.

Site Before After
1 34.6 413
2 38.2 39.6
3 37.6 41.0

& Arrange the data into two columns of equal length such that each row

represents one individual (or site in this case). The columns should be labelled
‘before’ and ‘after’ as this will make it easier to interpret the output.

Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘Paired-Samples
T Test...". In the dialogue box that appears move ‘Before’ into ‘Variablel’ and
‘After’ into ‘Variable2’ in ‘Pair’ row 1. Then click ‘OK’.

The first part of the output gives some information about the data like this:

Paired Samples Statistics

Std. Error

Mean N Std. Deviation Mean
Pair Before | 36.800 3 1.9287 1.1136
1 After 40.633 3 .9074 .5239

Paired Samples Correlations

N Correlation | Sig.

Pair 1 Before & After 3 -.749 | .462

It tells you the names of the two variables, means, how many observations there
were, standard deviation and standard error of the two sets of data. The next
table refers to a Pearson product moment correlation done on the data, with the
value of r given as ‘Correlation’ and ‘Sig.’ being the test of the null hypothesis
that ris O (i.e. no correlation).

The second part of the output is the report from the t-test itself:
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Paired Samples Test

Paired Differences

95% Confidence
Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df | Sig. (2-tailed)
Pair 1 Before - After | -3.8333 2.6764 1.5452 | -10.4820 | 2.8153 | —-2.481 2 131

The first three columns refer to the mean difference between pairs of data, fol-
lowed by the standard deviation and standard error of the differences. Next
comes the confidence interval of the mean saying it is 95% likely to be between
the two values given. The 95% Cl is very wide because there are only three pairs
of data. Finally comes the -test itself with the result of the test (the value given
can be looked up on a Student’s t-table). Then the degrees of freedom (number
of pairs minus 1) and the probability of this ¢ value (or larger) occurring if the
null hypothesis is correct. In this case the probability is 0.131 (or 13.1%) and
therefore we conclude that there is no significant difference between the two
columns. However, with such a small set of data, achieving a significant result is
extremely unlikely.

] [ most cases you will read in the data from a file and attach it. Here, as there
are very small samples, I'm typing the data in directly into variables (vectors) called
‘before’ and ‘after’, then carrying out a paired #-test, which uses the R function
‘t.test ()’ with the option ‘paired=T’ to indicate that it’s a paired test.

> before=c(34.6,38.2,37.6)
> after=c(41.3,39.6,41.0)
> t.test (before,after,paired=T)

Paired t-test

data: before and after

t=-2.4807, df=2, p-value=0.1313

alternative hypothesis: true difference in means is not
equal to O

95 percent confidence interval:

-10.481980 2.815313

sample estimates:

mean of the differences

-3.833333

The output confirms that a paired i-test is carried out and gives the names of the
two variables. The ¢ statistic, degrees of freedom and P-value are given. The output
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then reminds you that what is being tested is whether the difference between
the two variables is significantly different from zero. It then gives the upper and
lower values of the 95% CI of the difference. If the 95% confidence values both
have the same sign, then the mean difference between the two samples is sig-
nificantly different from zero. Here, with such small sample sizes, even with a
mean difference of -3.83 the confidence intervals straddle zero.

First input the data into two columns, one for before and the other

after. There is no need to have a separate column to label the individual sites
although this might help you interpret the results.
1 From the ‘Stat’ menu, select ‘Basic Statistics’ and then ‘Paired t...". Move the
two variables into the boxes labelled ‘First sample:” and ‘Second sample:’. Click
‘OK’.

You get the following output from the example.

Paired T-Test and CI: Before, After

Paired T for Before - After

N Mean StDev SE Mean

Before 3 36.80 1.93 1.11

After 3 40.63 0.91 0.52

Difference 3 -3.83 2.68 1.55

95% CI for mean difference: (-10.48, 2.82)

T-Test of mean difference = 0 (vs not = 0): T-Value = -2.48 P-Value = 0.131

2 The output confirms that you have run a paired t-test of before and after.
There are three pairs of data in the example giving a value of 3 for N with sum-
mary statistics. A line on the table of ‘Difference’ is important as the test is actu-
ally comparing the values of difference against zero. Finally is shown a t value and
then the important value, the P-value. If this is less than 0.05 then you must
reject the null hypothesis that the difference between before and after is zero. In
this case the value of 0.131 indicates that there is not enough evidence in the
three pairs of data to reject the null hypothesis. However, with such a small data
set in the example it is not surprising that you can’t detect a significant effect.

3 The null hypothesis is that the differences are not significantly different from
zero. If you want to test a difference other than zero, or you want to have a one-
tailed test (i.e. you are only interested in the hypothesis that ‘before’ is greater
than ‘after’, with the null hypothesis that ‘before’ is not greater than ‘after’) then
go to ‘Options’ in the ‘Paired-t’ dialogue before running the test.

The datashould be input in two columns of equal length. If the spreadsheet
were set up using the example exactly as the table above, then the data for
‘before’ would be in cells b2, b3 and b4, while that for ‘after’ would be in cells
c2, c3 and c4. In Excel it doesn’t really matter where the data are on the
spreadsheet as long as you know the cell numbers.
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Select an empty cell where you want the result reported. Then there are two
ways of achieving the same result.
1 Go to ‘Insert function’, select ‘Statistical’ and then “TTEST’. Define Array 1
as ‘b2:b4’ and Array?2 as ‘c2:c4’. Select ‘Tails’ as 2’ (you will nearly always
require a two-tailed test) and the ‘type’ as ‘1’ (this selects a paired test in Excel).
The probability or P-value of ‘0.131” will then appear in the cell.
2 Type in ‘=TTEST’ followed by the first and last cell of the first column
separated by a colon, then the same for the second column. Then the number
of tails in the test (usually 2) and then a 1 to ask for a paired test. In this case
you would type ‘=TTEST(b2:b4,c2:c4,2,1)’ and the probability will appear
in the cell.
This will give you the P-value associated with the paired t-test. To get the value
of the t statistic you can use the function “TINV’. Select a blank cell and type in
‘=TINV(F8,2)’ replacing ‘F8’ with the cell containing the result in the previous
step and replacing ‘2’ with the degrees of freedom which is the number of pairs
of observations minus 1.

Wilcoxon signed ranks test

This test is the non-parametric equivalent of the paired t-test. It has far fewer
assumptions about the shape of the data although it does assume that the data are
on a continuous scale of measurement. This means that any type of length, weight,
etc. will be suitable. The test is somewhat less powerful than the paired #-test. A
minimum of six pairs of data are required before the test can be carried out.

An example In this example the ‘individuals’ are sampling stations in a river
system and the data are measures of flow (in litres per second). The investigator
wishes to know if the flow is significantly different on the two days. The null
hypothesis is that there is no difference in flow.

Station Day 1 Day 2
1 268 236
2 260 241
3 243 239
4 290 285
5 294 282
6 270 273
7 268 258

Arrange the data into two columns of equal length such that each row
represents one individual. The columns should be labelled.

From the ‘Analyze’ menu choose ‘Nonparametric Tests’ and then ‘2 Related

Samples...”. As a default the “Wilcoxon’ test should be checked but ensure this
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is the case. Move the two variables (‘Day_1’ and ‘Day_2’ in this example) to
the first row in the “Test Pairs:” box with the right arrow then click ‘OK’ to run
the test.

The output will look like this:

Wilcoxon Signed Ranks Test
Ranks
N Mean Rank | Sum of Ranks
Day 2 -Day_1 Negative Ranks 6° 4.50 27.00
Positive Ranks 1° 1.00 1.00
Ties 0°
Total 7

a.Day_2 < Day_1
b. Day_2 > Day_1
c.Day_2 =Day_1

Test Statistics®

Day_2 -
Day_1

z -2.1972
Asymp. Sig. (2-tailed) .028

a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test.

The test classifies the paired data into three categories: those where ‘Day_2’ is
less than ‘Day_1" (‘Negative Ranks’); those where it is greater (‘Positive Ranks’)
and those where they are the same (‘Ties’). In this case there are six of the
first, one of the second and no ties. It also ranks the absolute differences (from
smallest difference as rank one to the largest as rank seven). In this case the
one pair where the flow is greater on ‘Day_2’ is also the smallest difference, as
it is ranked ‘1.00’. The output value of ‘Z’ in the second table may be looked
up in statistical tables but the result is given anyway as a ‘Asymp. Sig. (2-tailed)’.
In this case P<0.05 so the null hypothesis must be rejected. The alternative
hypothesis that the flows were different on the two days is accepted.

] Assuming the data have been input or imported and the two vectors

containing the data are in ‘Dayl’ and ‘Day2’ you can then use ‘wilcox.
test (). Here we specify ‘paired=TRUE’ and this means the test will be
comparing the differences between the two observations against a null hypothesis
that the differences have a median of zero.
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> wilcox.test (Dayl, Day2, paired=TRUE)
Wilcoxon signed rank test

data: Dayl and Day?2

V=27, p-value=0.03125

alternative hypothesis: true location shift is not
equal to O

Here the P-value is less than 0.05, so we reject the null hypothesis that the
median difference between ‘Dayl’ and ‘Day2’ is zero.

Note that R will compute what is called an ‘exact’ version of the test to calculate
the P-value if there are fewer than 50 pairs of observations. This will have a small
impact on the P-value in most cases, although to retain consistency between tests
where some are above 50 and some below, you can use ‘exact=TRUE  or
‘exact=FALSE’ as an option within the ‘wilcox.test()’. In this example
‘exact=F" will alter the P-value to 0.03461, which is the value given in MINITAB.

This test is not achievable in a single step. However, if the data are
arranged in two columns you can carry out an analogous test to the paired t-test.
1 You need to create a new column that contains the difference between the
first observation and the second. Go to the ‘Calc’, select ‘Calculator...”. Type
‘Diff’ in the ‘Store result in variable:” and ‘Day 1’ — ‘Day 2’ (either by typing or
double-clicking) in the ‘Expression:” box (replacing with the names of your vari-
ables as appropriate).

2 The null hypothesis is that the median of the differences is not significantly
different from zero. This is tested using a one-sample Wilcoxon test. Go to the
‘Stat’ menu, then ‘Nonparametrics’, then ‘1-sample Wilcoxon..... In the dia-
logue box put ‘Diff’ in the ‘Variables:” box. Select the ‘Test median’ option,
leave the value as 0.0 and make sure that the ‘not equal’ option is selected from
the pull-down menu. Click ‘OK’.

You get the following output from the example.

Wilcoxon Signed Rank Test: Diff

Test of median = 0.000000 versus median not = 0.000000

N for Wilcoxon Estimated
N Test Statistic P Median
Diff 7 7 27.0 0.035 10.50

3 The output confirms that you are testing the null hypothesis that the median
of ‘Diff’ (i.e. the difference between the flows on the two days) is zero (with the
package deciding to give a ridiculous number of decimal places). The important
value is the P-value ‘P’, which is 0.035 in this example. This is less than the
critical 0.05 and the null hypothesis should be rejected. The alternative hypoth-
esis H | is that the median of the differences is not equal to zero. This means that
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the flows on day 1 and day 2 were different. Inspection of the raw data or the
estimated median shows that flow was greater on day 1.

There is no easy method for performing the Wilcoxon signed ranks test in

Excel.

Sign test

This is a very simple test that makes almost no assumptions about the form of
the data, only that it is possible to compare them in some way to decide which
is larger. The test is of very low power but very safe (i.e. it is a conservative test
and type I errors are very unlikely). The sign test should only be used when
there are large numbers of paired observations.

The test works using the assumption that if two sets of observations are not
different then there will be the same number of pairs when A is bigger than B
as there are when B is bigger than A. Therefore the actual values of the data
points are relatively unimportant as long as they can be compared to see which
is the larger. This means the test is not very sensitive to poor quality of data.

The sign test uses the binomial distribution (page 37) to calculate significance
values.

An example The same data as was used as for the Wilcoxon signed ranks test
will be used in this example.

Arrange the data into two columns of equal length such that each

row represents one individual (or site). The columns should be labelled
appropriately.

From the ‘Analyze’ menu choose ‘Nonparametric Tests’ and then ‘2 Related
samples’. As a default the “Wilcoxon’ test should be checked, uncheck this and
check ‘Sign’ instead. Select the two variables (‘Day_1’ and ‘Day_2’ in this exam-
ple), move them to the first row of the “Test Pairs:” and click ‘OK’.

The output using the example data (described above for the Wilcoxon signed
ranks test) will look like this:

Sign Test

Frequencies

Day_2 - Day_1 Negative Differences? 6
Positive Differences® 1
Ties® 0
Total 7

a.Day_2 < Day_1
b. Day_2 > Day_1
c.Day_2 = Day_1
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Test Statistics®

Day 2 -
Day_1

Exact Sig. (2-tailed) 1252

a. Binomial distribution used.
b. Sign Test

For the seven pairs of observations there are six where ‘Day_2’ is less than
‘Day_1" (‘Negative differences’). The probability of this or a more extreme
result occurring by chance is 0.125 or 12.5% and this is given as the ‘Exact Sig.
(2-tailed)’. In fact it is giving the probability of getting zero, one, six or seven out
of seven the same direction, given that we are expecting the chance of getting a
higher or lower value to be 0.5 (i.e. equal chance of A bigger than B as for B
bigger than A).

In this case we would not reject the null hypothesis that the two days had
different flows. This shows clearly that the sign test is of very much lower power
than the Wilcoxon signed ranks test. In fact, the sign test is really only useful as
the number of paired observations becomes quite large.

] There is no direct way to carry out this test in R without downloading a
package. However, it is a very simple test that makes use of the binomial
distribution. First make sure the data are available in two labelled vectors. Here
I've used the example from the Wilcoxon signed ranks test and have two sets of
seven observations in vectors labelled ‘Dayl’ and ‘Day2’.

We then need to know how many pairs of observations there are (‘length () ’)
and how many times the value in ‘Dayl’ is greater than that in ‘Day2”:

> length(Dayl)
(11 7

> sum (Dayl>Day?2)
[1]1 6

The probability of getting a value this extreme or more extreme is calculated in
a binomial test:

> binom.test (6,7)
Exact binomial test

data: 6 and 7

number of successes=6, number of trials=7,
p-value=0.125

alternative hypothesis: true probability of success is
not equal to 0.5
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95 percent confidence interval:
0.4212768 0.9963897

sample estimates:

probability of success
0.8571429

Here the P-value is greater than 0.05, so we can’t exclude the null hypothesis
that there is an equal probability of ‘Day1’ being greater than 'Day2’ and ‘Dayl’
being less than ‘Day2’. The 95% confidence interval of the prediction crosses
the null value of 0.5 (i.e. equal probability of the two outcomes). In fact this test
is very weak and is unlikely to get a significant result with such a small number
of observations. For a sample size of seven only seven out of seven or zero out
of seven will give a P-value below 0.05.
In R you can easily combine all the steps above into a single line:

> binom. test (sum(Dayl>Day2), length (Dayl) )

You must make sure that there are the same number of observations in each
vector and that they are lined up properly (i.e. each element in a vector is paired
with the corresponding element in the other vector).

WINGZYEN This test is carried out in a very similar way to the Wilcoxon signed

ranks test. Arrange the data in two columns. Label the columns appropriately.
1 Create a new column that contains the difference between the first observa-
tion and the second. Go to the ‘Calc’, select ‘Calculator...”. Type ‘Diff’ in the
‘Store result in variable:” and ‘Day 1’ — ‘Day 2’ (either by typing or double-
clicking) in the ‘Expression:’ box (replacing with the names of your variables as
appropriate). Obviously, you will have to replace these names with the appro-
priate names for the data columns.

2 The null hypothesis is that there are equal numbers of positive and negative dif-
ferences. This is tested using a one-sample sign test. Go to the ‘Stat’ menu, then
‘Nonparametrics’, then ‘1-sample Sign...". In the dialogue box put ‘diff’ in the
‘Variables:” box. Select the ‘Test median’ option, leave the value as 0.0 and make
sure that the ‘not equal’ option is selected from the pull-down menu. Click ‘OK’.

You get the following output from the example.

Sign Test for Median: Diff

Sign test of median = 0.00000 versus not = 0.00000

N Below Equal Above P Median
Diff 7 1 0 6 0.1250 10.00

3 The output confirms that you are testing the null hypothesis that the median
of ‘diff’ (the difference between the flows on the two days) is zero. The important
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value is the P-value ‘P’, which is 0.1250 in this example (i.e. there is a 12.5%
chance of getting this result or a more extreme one). This is greater than the
critical level of P=0.05 and the null hypothesis should be accepted. This is the
same data as was used in the Wilcoxon signed ranks test that rejected the null
hypothesis, thus demonstrating what a conservative test it is.

There is no direct method for the sign test in Excel. However, if you
compare each pair of data and count up the number of times the first observation
is greater then you can use the ‘Binomdist’ function in Excel to work out the
P-value. The binomial distribution is described in Chapter 5. Here I give two
methods for the sign test in Excel and a method for counting up the number of
‘+’ and ‘-’ pairs.

Using the example above, there are seven pairs of data. In six of the seven
pairs the first column is greater. We are assuming a null hypothesis that there is
no difference between the two columns. If that is the case then we expect an
equal number of observations where the first column is greater and when the
first is smaller.

1 In Excel the probability of getting six plusses out of seven can be determined
fairly easily. After selecting an empty cell where you want the result to be dis-
played there are two methods.

Either: use ‘Insert Function’, select ‘Statistical’, then ‘BINOMDIST’, click
‘OK’ and you will be confronted with four boxes. In the first type the number
of successes (‘Number_s’), in this case 6. In the second the number of “Trials’, in
this case 7. Next the probability of getting a ‘success’, in this case we choose 0.5
(in other words, we assume an equal chance of getting a plus or a minus). In the
last box type O to indicate that you don’t require the cumulative probability.
Click ‘OK’ and this will give you the result 0.054.

Or: type in the values described above directly: ‘=BINOMDIST(6,7,0.5,0)’.

This is not the complete answer. It only tells you the chance of getting six out
of seven. What you need from the sign test is the chance of getting a result as
extreme as six out of seven or more extreme. For seven trials that means six or
seven as well as zero or one because the test is two-tailed.

2 In a new empty cell for each possibility, repeat the previous commands but
replacing the six successes with seven, zero and one. A good way to do this is to
put the four required numbers into a column then use the cell number instead
of typing in the number. For example, if cell A1 has a 7 in it, A2 has 6, etc. then
just type into cell B1 ‘=BINOMDIST(A1,7,0.5,0)’ and then copy this down the
next four cells by clicking on the small black square in the bottom right corner
of the cell and dragging it down to cover the cells required.

3 Total up the four probabilities by typing ‘=SUM(B1:B4)’ in an empty cell.
This should give you the answer 0.125. This can be interpreted as a 12.5%
chance of getting a result as extreme as six out of seven or more extreme. We
have to accept the null hypothesis that there is nothing happening between the
two sampling events because the value is well above P=0.05. This demonstrates
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the low power of the test. In fact, with a sample size this small you need to get
seven out of seven or zero out of seven to get a significant result (that has a
probability of 0.016).

An alternative method in Excel, useful with larger samples, is to use the cumu-
lative probability option. As this is a two-tailed test with a 0.5 chance of plus or
minus, the probability of getting one out of seven is the same as getting six out
of seven. So to test the probability of getting six out of seven or more extreme
is equivalent to testing that of one out of seven. The last number of the
‘BINOMDIST’ function can be changed from zero to one to give cumulative
probability (i.e. the chance of getting that number or lower). So the probability
of getting zero or one is given by ‘=BINOMDIST(1,7,0.5,1)’. Doubling this
value will give both the probability of getting either six events out of seven or
one out of seven.

These methods require that the number of ‘+’ and ‘~" observations are known.
In Excel it is easy to compare two values and tally the number of times A is
larger than B using the ‘IF’ function. Return to the data table with paired values
in columns B and C. Select cell D2. Click on ‘Insert function’, then ‘Logical’ and
‘IF’. The ‘Logical_test’ is B2>C2, testing whether the value in column B is
greater than that in column C. The ‘Value_if_true’ should be 1 and ‘Value_if
false’ 0. Click ‘OK’ and paste this down the D column. A column of six 1s and
one 0 should appear. The number of 1 values can be quickly totalled using
‘SUM(D2:D8)’. A word of caution. Ties cause problems with this method. I
suggest that they are totally ignored in the sign test. So add up the number of
times A is bigger than B and then remove all instances when A =B before calcu-
lating the total number of observations.

Unpaired data

Unpaired samples or unpaired comparisons occur when a single individual
is measured or tested only once. There will, therefore, be two totally sepa-
rate groups of observations making up the two samples. Two groups are
often obvious; for example males and females, or kudu and eland. However,
the distinction between the groups may be rather arbitrary, such as eastern
and western, or large and small. Three tests are considered below: the
independent-samples t-test, a one-way analysis of variance and the Mann-
Whitney U-test.

t-test

The independent-samples t-test is the more usual form of the t-test and if the
term ‘t-test’ is not qualified then this is what is being referred to. The null hypoth-
esis is that the two sets of data are the same. (Actually the null hypothesis is that
the two sample means come from a population with the same true mean, pu.)
The t-test assumes that the data are continuous, at least approximately normally
distributed and that the variances of the two sets are homogeneous (i.e. the



104 | Chapter 7

same). If possible these assumptions should be tested before the test is carried
out, although this test is often incorporated into the test in statistical packages. If
the two sets of observations do not have the same variance then there are ways
to adjust the result of the t-test to compensate. It is these adjustments are often
incorporated into the test in the statistical package.

An example The weights of five grains have been measured from each of two
experimental cultivars called Premier and Super. Each grain has been weighed to
the nearest 0.1 mg. The researcher wishes to determine whether the grain weight
is the same in the two cultivars. The null hypothesis (H,) is that the two culti-
vars have the same mean grain size. The alternative hypothesis (H,) is that the
two cultivars have different mean grain size.

Premier Super
24.5 26.4
23.4 27.0
22.1 25.2
253 25.8
23.4 27.1

Input all of the observed data into a single column. Use another column
for the labelling of the groups. This may seem wasteful but it is a much easier
system when it comes to multiway analysis where each item of data will belong
to several groups simultaneously.

The five grains from each of two cultivars of crop plant have been placed in the
second column. The two cultivars have been coded as ‘1’ or 2’ in the first column.
Columns have been labelled in the ‘Variable View’. The package only allows
restricted labels so the ideal label ‘Grain size (mg)’ has been shortened to ‘Grain_
sz’, although the full label can be added using the ‘label’ column in the ‘Variable
View’. The names of the groups (cultivars here) can be added using the ‘Values’
column of the ‘Variable View’, and the value labels can be shown on the spread-
sheet by choosing the ‘Value Labels’ option under the ‘View’ menu (see Fig. 7.5).

Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘Independent-
Samples T Test...’. In the dialogue box that appears move ‘Grain_sz’ into the
‘Test Variable(s):’ box by first highlighting it and then clicking on the appro-
priate move button (a blue right arrow). Next move ‘Cultivar’ into the
‘Grouping Variable:” box. It will appear as ‘Cultivar(??)’. You need to click
the ‘Define Groups...” button and then input ‘1’ in ‘Group1:’ and ‘2’ in
‘Group 2:” before clicking ‘Continue’. This will return you to the first dia-
logue box. You will see that ‘Cultivar(??)’ is now ‘Cultivar(12). Click ‘OK’
to run the test.
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Fig. 7.5 Arranging the data for a t-test in SPSS. The groups for ‘Cultivar’ have been
entered as ‘1’ and ‘2’ and then given labels in the ‘Variable view’. The selected cell is
still filled with the number ‘1’. Also note that the pop-up label for column two gives
the full name of the variable, rather than ‘Grain_sz’.

The output will come in two parts. The first gives some information about

the data like this:

— T-Test
Group Statistics
Std. Error
Cultivar N Mean Std. Deviation Mean
Grain size (mg) Premier 5 23.740 1.2178 .5446
Super 5 26.300 .8062 .3606

This confirms the type of test. Then in the table shows that the variable used
was ‘Grain size (mg)’ and that there were two groups of ‘Cultivar’ called
‘Premier’ and ‘Super’ each with ‘N’ of 5 (number of observations). Then come
some simple descriptive statistics of the two samples: their mean, ‘Std. Deviation’
and ‘Std. Error Mean’ (standard error of the mean). (Note that the full name of
the data variable and the group names for ‘1’ and ‘2’ will only appear if they
have been added in the ‘Variable View’.)
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The second part of the output contains the result of the t-test itself:

Independent Samples Test

Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval

of the Difference

Mean Std. Error

F Sig. t df Sig. (2-tailed) | Difference | Difference Lower Upper
Grain Equal variances 762 408 | -3.919 8 .004 -2.5600 .6531 -4.0662 -1.0538
size (mg) assumed
Equal variances
not assumed -3.919 | 6.941 .006 -2.5600 .6531 -4.1071 -1.0129

First comes the Levene’s test for equality of variances. As the t-test assumes
that the two samples have equal variance SPSS sensibly tests this every time
you carry out a t-test. The important figure is the second one. In this case it
is ‘Sig.=.408" (i.e. P>0.05) so there is no evidence that the variances are
unequal. If the P-value (‘Sig.’) is lower than 0.05 then you should be wary
about using the t-test and should consider using the Mann—Whitney U test
instead.

The remainder of the output appears on two lines. The upper one, ‘Equal
variances assumed’, is the standard t-test and the lower one ‘Equal variances not
assumed’ is a more conservative version that compensates for the possible prob-
lems caused by difference in variances by using a reduced value for the degrees
of freedom in the test. The lower the ‘Sig.” value in the Levene test, the bigger
the difference between the two lines. In most cases you should not need to
worry about the fact that there are two versions of the test because in most
cases, as in this example, they will tell the same story.

The ‘t’ is the actual result of the test that can be looked up on Student’s
t-table. ‘df’ is the degrees of freedom of the test. This will be two fewer than the
total number of observations in the two samples. The result of the Levene’s test
determines the reduced degrees of freedom used in the lower line.

Next comes the important bit; labelled ‘Sig. (2-tailed)’, it is the probability
that the null hypothesis is correct. This is the P-value. In this case the P-value is
much less than 0.05 so it is clear that the null hypothesis is extremely unlikely
to be true. In fact there is only a 0.4% chance that we would see a t value as large
as this if the null hypothesis is true using the basic t-test. This value rises to 0.6%
using the more conservative version (on the lower line).

‘Mean Difference’ gives the value of mean of group 1 minus mean of group 2.
It will be a negative value if the mean of group 2 is larger than that of group 1.
‘Std. Error Difference’ gives the standard error for this difference. Finally comes
a ‘95% Confidence Interval of the Difference’ column. This gives the range of
difference between the two means within which 95% of samples are likely to
come. In the example the ‘Lower’ and ‘Upper’ values are both negative which
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shows that cultivar 2, Super, is very likely to be heavier than cultivar 1, Premier.
When the t-test result is not significant the upper 95% confidence value will be
positive and the lower negative.

] There are two routes depending on how the data are arranged. In the first the
two groups should be in two variables; in the second all the data are in one
variable and another variable is used to identify the groups. Both use the function
‘t.test () inR.

Method 1 Assuming that the data have been arranged and labelled as in the
example use the following command, inserting the names of your variables
instead of mine. Although ‘paired=FALSE’ is the default, so could be removed,
it does confirm that this isn’t a paired test:

> t.test (Premier, Super, paired=FALSE, var.equal=TRUE)
Two Sample t-test

data: Premier and Super

£t=-3.9195, df=8, p-value=0.004422

alternative hypothesis: true difference in means is not
equal to 0

95 percent confidence interval:

-4.066158 -1.053842

sample estimates:

mean of x mean of y

23.74 26.30

The output confirms the value of t and the degrees of freedom ‘df’. The P-value
is well below 0.05 so we reject the null hypothesis that the two sets of data
come from distributions with the same mean. The 95% confidence limits both
have the same sign here; if they cross zero then the P-value will be above 0.05.
Finally the mean values of the two variables are given.

The default version of the t-test in R doesn’t assume that variances are equal
and uses the comparison of variances of the two variables to adjust the degrees
of freedom. This version of the t-test is here called the ‘Welch t-test’. This
is more conservative, and therefore more likely to generate a type II error and
less likely to give a type I error. In the example there is no effect on the conclu-
sions as the P-value is still well below 0.05:

> t.test (Premier, Super,paired=FALSE)
Welch Two Sample t-test

data: Premier and Super

t=-3.9195, df=6.941, p-value=0.005849

alternative hypothesis: true difference in means is not
equal to O
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Method 2 Here the data are in a single variable (vector) and there is another
variable that contains the group codes. In the example the data are in ‘Grain’
and the grouping variable is ‘Cultivar’. The syntax in R is used in many functions
and states that the model being used is that ‘Grain’ is a function of ‘Cultivar’:

> t.test(Grain~Cultivar, var.equal=TRUE)
Two Sample t-test

data: Grain by Cultivar

t=-3.9195, df=8, p-value=0.004422

alternative hypothesis: true difference in means is not
equal to O

95 percent confidence interval:

-4.066158 -1.053842

sample estimates:

mean in group 1 mean in group 2

23.74 26.30

Here the output is identical to method 1, except that the data are confirmed to
be arranged in a different way. The output confirms the value of t and the
degrees of freedom ‘df’. The P-value is well below 0.05 so we reject the null
hypothesis that the two sets of observations come from distributions with the
same mean. The 95% confidence limits both have the same sign here; if they
cross zero then the P-value will be above 0.05. Finally the mean values of the
two sets of observations are given.

As with method 1, the default method does not assume that variances are
equal and uses the comparison of variances of the two variables to adjust
the degrees of freedom. This version of the test is more conservative, and there-
fore more likely to generate a type Il error and less likely to give a type I error.
In the example there is no effect on the conclusions:

> t.test(Grain~Cultivar)
Welch Two Sample t-test
data: Grain by Cultivar

£=-3.9195, df=6.941, p-value=0.005849

There are two methods. In the first the two groups should be in two
columns, and in the second all the data are in one column and another column
is used to identify the groups. The second method appears wasteful but it is a
required strategy in more complex analysis.

Method 1 Input the data into two columns and label the columns appropri-
ately. From the ‘Stat’ menu select ‘Basic statistics’ and then 2-sample t...". In
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the dialogue box that appears select the ‘Samples in different columns’ option.
Then place the appropriate column labels (‘Premier’ and ‘Super’ in the example)
in the two boxes labelled ‘First:” and ‘Second:’. Make sure the ‘Options...” dia-
logue reads ‘Alternative: not equal’ and the ‘Confidence level:” is set at 95.0
(this means that the mean for the difference between the two means will be
calculated with a 95% confidence interval). Leave the ‘Assume equal variances’
box unchecked. Click ‘OK’ to run the test.

(Or, if the command interface is enabled, type ‘twosample cl c2’ at the MTB>
prompt in the session window. Or you can input commands using ‘Edit’ menu then
‘Command Line Editor".)

The following output appears:

Two-Sample T-Test and CI: Premier, Super

Two-sample T for Premier vs Super

N Mean StDev SE Mean
Premier 5 23.74 1.22 0.54
Super 5 26.300 0.806 0.36
Difference = mu (Premier) - mu (Super)
Estimate for difference: -2.560
95% CI for difference: (-4.158, -0.962)
T-Test of difference = 0 (vs not =): T-Value = -3.92 P-Value = 0.008 DF = 6

This output confirms the test was a t-test and confirms the names of the two
variables. It then gives summary statistics for the two groups: number of obser-
vations (‘N’), mean, standard deviation and standard error of the mean. The
next line gives the 95% confidence interval for the mean difference between the
two groups. The references to ‘mu’ are to the Greek letter, u, which is used to
denote a mean. In the last line is the output for the t-test itself, confirming that
a test of equal means is being made. The value of t is given as —3.92 and the
important P-value as 0.008. This value is much less than 0.05 so we reject the
null hypothesis and accept the H, that the two groups have different means.
Inspection of the summary statistics shows that Super has larger grain size.

The degrees of freedom (‘DF’) is given as 6. There should be eight degrees of
freedom for the example but, as the assumption of equality of variance was not
made, a correction is applied to the degrees of freedom to make the test more
conservative. If the ‘Assume equal variances’ is checked then the example data
will give eight degrees of freedom, the same value for t, and a P-value of 0.004.

Method 2 Input all the data into a single column and use a second column to
label the data. These labels should be integers. In the example is probably best
to label ‘Premier’ as ‘1’ and ‘Super’ as ‘2’. Label the columns appropriately. In the
example the data column should be labelled ‘Grain sz’ and the group codes as
‘Cultivar’.
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From the ‘Stat’ menu select ‘Basic statistics’ and then ‘2-sample t...". In the
dialogue box that appears select the ‘Samples in one column’ option. Then place
the column with the data in the ‘Samples:” box and the one with the group
codes in the ‘Subscripts:” box. Make sure the pull down menu in the ‘Options...’
dialogue reads ‘not equal’ and the ‘Confidence level:” is set at 0.95. Leave
‘Assume equal variances’ unchecked. Click ‘OK’ to run the test.

(Or type ‘twot cl c2’ (assuming data are in c1) at the MTB> prompt in the ses-
sion window. Or you can input commands using ‘Edit’ menu then ‘Command Line
Editor’.)

You get the following output:

Two-Sample T-Test and ClI: Grain sz, Group

Two-sample T for Grain sz

Group N Mean StDev SE Mean
1 5 23.74 1.22 0.54
2 5 26.300 0.806 0.36
Difference = mu (1) - mu (2)

Estimate for difference: -2.560
95% CI for difference: (-4.158, -0.962)
T-Test of difference = 0 (vs not =): T-Value = -3.92 P-Value = 0.008 DF = 6

Apart from the code names ‘1’ and ‘2’ replacing the group names the output is
identical to that produced in Method 1.

In this case the data may be anywhere on the spreadsheet. As long as you
know the cell locations of the two groups there is no problem. However, in
practice, it is much easier if the data are either input exactly as in the SPSS
example above, with one column defining the group and another containing the
actual data, or in two adjacent, and clearly labelled, columns.

Assuming you have input the data in an identical format to the SPSS example
for the t-test then the data for the first cultivar is in cells b2-b6 and for the sec-
ond cultivar in cells b7-b11. There are now two methods that may be used.

Method 1 Go to ‘Insert function’, select ‘Statistical’ and then “TTEST’. Define the
first array (‘Array 1’) as ‘b2:b6’ and the second array as ‘b7:b11’. These arrays may
be defined by selecting the box then clicking and dragging over the appropriate
cells on the spreadsheet. Select ‘tails’ as ‘2’ (you will nearly always require a two-
tailed test) and the ‘type’ as ‘2’ (this selects a standard t-test; ‘1’ gives a paired test).
Click ‘OK’. The probability or P-value of 0.0044 will then appear in the cell.

Method 2 Type in ‘TTEST’ followed by, in parentheses, the first and last cell of
the first column separated by a colon, then the same for the second column.
Then the number of tails in the test (usually 2) and then a 2 to ask for a standard
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t-test. In this case you would type ‘=TTEST(B2:B6,B7:B11,2,2)" and the
probability will appear in the cell. Excel does not report the t value.

If you need the value of ¢ for a report, then you can use the function ‘TINV’ to
convert the P-value and degrees of freedom back into a t value. Using the exam-
ple, inserting ‘=TINV(0.0044,8)" into a blank cell will give the result 3.92.
Replace the values with those appropriate for your data, or point at the relevant
cell on the spreadsheet.

If you are concerned that the variances of the two samples may not be equal,
or you know it to be the case, then you should not use the standard t-test. Excel
allows you to carry out a t-test that does not assume homogeneity of variances.
This is easily accessed by using a type3 test instead of a type2. If you use a
type 3 t-test with this example the probability should be reported as 0.0058.

One-way ANOVA

Using analysis of variance (ANOVA) to determine whether just two groups have
the same mean may seem like overkill. This may be the simplest use of ANovA
but it still works and gives the same answer as the t-test. I am of the opinion that
the fact that the t-test is restricted to two groups makes the use of ANOVA prefer-
able in this situation because you don’t have to learn a new test when you con-
sider more than two groups.

ANOVA has the same basic assumptions as the t-test: that the data are continu-
ous, at least approximately normally distributed and the variances of the data
sets are homogeneous. These assumptions should be tested before the test is
carried out. The null hypothesis is that the sets of data have the same mean.
(The way that ANOVA actually approaches this is to have a null hypothesis that
the variation within groups is the same as variation between groups.)

An example In the illustrations of the use of the test for the packages I will be
using the same example data set as in the t-test. With two samples of five obser-
vations each and each sample coming from a different cultivar of a crop plant.

The ideal ANOVA table that you would include in a write-up or publication
should appear as something along the lines of the table shown here.

Source df SS MS F P
Cultivar 1 16.38 16.38 15.36 0.004**
Residual 8 8.53 1.07

Total 9 24.92 2.77

d.f is degrees of freedom, SS is the sum of squares, MS is the mean square (sum
of squares divided by degrees of freedom), F is the ratio of within-group varia-
tion to between-group variation (in this case it is the MS for cultivar/residual
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MS). The P-value is the important one in this case it is less than 0.05 so we
reject the null hypothesis that the two cultivars have the same mean grain size.
The two asterisks indicate a highly significant result and are often used when
P<0.01. Compare this table with the output obtained using the packages below
to see where the various numbers have come from. (Note the word ‘residual’
often appears as ‘error’.)

If you wish to write this result in the text of a report the standard way would be
as follows: ‘analysis of variance showed that the grain size of the two cultivars was
significantly different (F, ;=15.36, P<0.01)". The two subscripted numbers after F
indicate the degrees of freedom for the between-group and within-group variance.

As with the t-test all the data are placed into a single column and another
column is used for the labelling of the groups (see Fig. 7.5). This may seem
wasteful but it is a much easier system when it comes to more complicated
analyses.

There are at least two routes to this test in SPSS. Unfortunately they give
rather different outputs. I will describe them in detail below. I suggest you try
both methods as the comparisons may help you understand how ANoOvA tables
work, and especially which parts of the tables to look at.

Method 1 Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘One-
way ANOVA .... In the dialogue box that appears move ‘Grain_sz’ into the
‘Dependent List:” box by first highlighting it and then clicking on the appropri-
ate move button (blue arrow). Next move ‘Cultivar’ into the ‘Factor’ box. You
can run the test now, although clicking ‘Options...” allows you to request a
‘Means plot’ which is useful for visualization of the data, some ‘Descriptive’
statistics of the data and a test for ‘Homogeneity of variance’ (Fig. 7.6). Click
‘Continue’ to leave the ‘Options’ box, then ‘OK’ to run the test.
This is the minimum output you will get:

ANOVA
Grain size (mg)
Sum of Squares | df | Mean Square F Sig.
Between Groups 16.384 1 16.384 | 15.362 | .004
Within Groups 8532 | 8 1.067
Total 24916 | 9

This confirms that the data is ‘Grain size (mg)’ (or ‘Grain_sz’ if the variable has
not been given an extra label). In the ANOva table the top line is the important
one; this is the variation between groups (i.e. between the two cultivars in this
example). The second line is the variation within the groups that is being used
as a comparison.
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Fig. 7.6 Using SPSS for one-way ANOvVA. The ‘Options’ dialogue box allows selection of
useful additional output. The Welch or Brown—Forsythe options should only be selected
if the Levene’s test for homogeneity of variance gives a P-value less than 0.05.

The first column is ‘Sum of Squares’ (often called SS), then ‘df’ or degrees of
freedom. As there are two groups in this example there is one degree of free-
dom between groups. There were five samples in each group giving two sets of
four degrees of freedom and therefore eight in total. Next comes a calculation
column: ‘Mean Square’ (often MS) is the sum of squares divided by the degrees
of freedom. Both SS and MS are customarily included in ANOVA tables.

Finally comes the important bit; the F-ratio, here labelled ‘F’. This is the
mean square for between groups divided by that for within groups. If there is
the same amount of variation between and within groups this will give an
F-ratio of 1. In this case the F-ratio is over 15. SPSS gives you the P-value for
this value of F with this degrees of freedom, labelling it as ‘Sig.”. The value is
0.004, indicating that the two groups are highly significantly different, since
P<0.01.

‘Options...”: one of the assumptions of a basic ANOVA is that variances are
equal. In the t-test in SPSS this is tested automatically. In ANOVA it is available
under the ‘Options...” button. Just check the box labelled ‘Homogeneity-
of-variance’ and click ‘Continue’ before running the test. If you do this a little
extra output appears before the ANOVA table.
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Test of Homogeneity of Variances

Grain size (mg)

Levene Statistic | dft | df2 | Sig.

762 1 8 | .408

The important value is given the label ‘Sig.’. The critical value is usually 0.05 and
if the value given here is less than that ANovA should not be used but a Mann—
Whitney U test used instead. The value in the example is well above 0.05.

Method 2 Under the ‘Analyze’ menu choose ‘General Linear Model’ and then
‘Univariate...’. In the dialogue box that appears move the variable with the
observations (‘Grain_sz’ in the example) into the ‘Dependent Variable:’ box by
first highlighting it and then clicking on the appropriate move button. Next
move the variable with the group codes (‘Cultivar