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Abstract: Accelerated coastal erosion and elevated risks of flooding due to global warming put
enormous burden on the ecosystems and economic health of coastal communities. Optimal policies
to lessen these negative impacts require an estimation of their costs and benefits. The aim of this
paper is to calculate the costs of beach erosion and flood risk through the valuation of property
prices in Hilton Head Island, a barrier island located in South Carolina, USA. Spatial lag hedonic
pricing was introduced in order to account for spatial autocorrelation in the dataset. The results show
that properties that are located within the zone of high, or very high, flood risk experience a 15.6%
reduction in value. The implicit price of being located close to an eroded beach is approximately 26%
of the price of an oceanfront property. However, this negative impact on property value diminishes
with distance from the shoreline.
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1. Introduction

Coastal living has been preferred by many Americans because of sandy beaches
and warmer climate. According to National Oceanic and Atmospheric Administration’s
(NOAA’s) estimates, population in coastal counties increased by approximately 40% from
1970 to 2010. Hilton Head Island (HHI), a foot-shaped barrier island located in Southeast
South Carolina, USA, experienced a similar population increase of almost 18% from 2007
to 2017. In addition, in 2019, 2.68 million travelers visited HHI, contributing a total of
$1.17 billion to the local economy [1].

Protection of beach and natural amenities is critical to maintain and improve economic
and environmental conditions that have been leading to rapid population growth in coastal
towns and cities. Unfortunately, global warming has been posing a great threat to these
communities for years and is projected to continue to have a wide range of effects on
coastal ecosystems and infrastructure. Accelerated shoreline changes and elevated risks of
flooding are some of the many outcomes of sea-level rise due to climate change.

If the sea-level rises 1.83 m by 2100, a total of 14,861 homes, which is currently 51% of
the HHI housing stock, will be underwater [2]. The economic cost under this scenario is
estimated to be $9 billion. Even if the sea-level rises at the lowest predicted level (0.6 m)
in the next 80 years, many low-lying coastal habitats, such as marshes and mudflats, may
be lost, as beaches and dunes are likely to be impacted by intensified coastal erosion
and widespread flooding. Beaches will diminish at a faster rate due to climate change
and its negative impact on the coastal sediment budget [3]. Warmer ocean temperatures
and increased moisture content in air that are linked to climate change are more likely to
contribute to the strengthening of hurricane development [4,5].
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Deterioration of environmental conditions combined with elevated population growth
increases the risk of structural damages in coastal communities. Wdowinski et al. (2016) [6]
analyzed the frequency of flooding occurrences in Miami Beach, Florida and concluded
that rain-induced and tide-induced events increased by more than 33% and 400%, respec-
tively, between 1998 and 2013, causing extensive property damages. McAlpine and Porter
(2018) [7] projected the annual cost of tidal flooding at around $3.71 on each square foot of
living area in the Miami-Dade area, Florida, which caused a total of $465 million in lost
property values between 2005 and 2016. According to a recent study by Kulp and Strauss
(2019) [8], if sea-level rise is not controlled, approximately 800,000 homes along the US
coastline will be damaged, causing a total of $451 billion in damages by 2050.

Coastal erosion, similar to flooding, has been adversely impacting the financial, eco-
nomic, and environmental health of coastal communities. Beach loss threatens oceanfront
and nearby properties, as the protection beaches provide as buffers against storm waves is
slowly disappearing. Lost business activities and lower tax revenue due to negative im-
pacts on tourism and hospitality industry are alarming for local governments, businesses,
and residents. According to Vousdoukas et al. (2020) [9], Beaufort County, SC, where
HHI is located, has experienced a cumulative shoreline change of −189 m. Based on their
estimations, in 30 years, erosion will thin approximately 36 percent of sandy coastline in
the entire US.

The primary focus of this paper is to explore how the risks associated with beach
erosion and coastal flooding are capitalized into residential property prices. Since environ-
mental goods are not sold and purchased in markets, as are private goods, hedonic pricing,
a type of non-market valuation technique, can help us extract the implicit values of coastal
erosion and flood risks through an examination of demands for real estate market. To our
best knowledge, the effects of shoreline change rates and flood risks on property prices are
investigated for the first time in the study area.

As coastal population has been increasing rapidly in the US, there is an urgent need
for effective policy prescriptions to combat coastal hazards. The results of this study may
provide valuable information to policy makers, since the costs of beach erosion and coastal
flooding need to be determined accurately so optimal adaptive strategies to lessen the
impact of sea-level rise can be enacted.

2. Literature Review

The hedonic pricing model (HPM) was used extensively to assess the relationship
between coastal hazards and property prices [10–14]. Bin et al. (2008a) [15] incorporated a
dummy variable that represented a 1% annual chance of flooding risk based on the Federal
Emergency Management Agency’s (FEMA’s) special flood hazard area specifications. Their
study found that the probability of flood risk reduced property values by 11% in New
Hanover County, North Carolina, USA. Turnbull et al. (2013) [16] adopted a similar
approach by separating the flood zones into two segments: highest risk and medium risk.
Their results showed that while an average price of a property that was in a high-risk flood
zone was significantly discounted, the medium-flood risk did not have any impact on
property prices in Baton Rouge, Louisiana, USA.

Bin et al. (2008b) [17] employed the HPM to examine the effects of flood hazard on
coastal property values in Carteret County, North Carolina, USA. They concluded that
location with floodplains (100-year return and 500-year return) lowered average property
values by 7.8 percent and 6.2 percent, respectively. Roberts et al. (2015) [18] examined
the property transactions that took place between 1988 and 2013 in Exmouth, Australia.
They adopted the HPM to assess the perception of risk through location in areas prone to
100-year average return interval (ARI) flooding. The 100-year ARI risk was found to have
no impact on property sale prices.
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Coastal erosion hazard, similar to flood risk, was also examined by researchers who
adopted the HPM [10,13]. Landry and Hindsley (2011) [19] examined the impact of negative
shoreline change rate on property prices in Tybee Island, GA, USA. They considered
properties with various cut-off distances from the shoreline. Estimated parameters for
cut-off distances greater than 300 m were found to be statistically insignificant. Similarly,
Jin et al. (2015) [20] investigated the effects of shoreline changes on home values in coastal
Massachusetts, MA, USA. While erosion impact on property values was found to be
negative and statistically significant, this effect was estimated to disappear as a property
was located away from the shoreline.

3. Study Area and Data Sources

Various data sources were utilized in this study. The condos and single-family houses
that were sold between 2011 and 2016 and located within 1500 feet (457 m) of the ocean
were included in the analysis. The study area and the properties sold within the 5-year
period are presented in Figure 1.
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The cut-off distance of 457 m was implemented based on the suggestions by the
previous studies [15,19] that examined the impacts of various coastal hazards on property
values in similar areas. Landry and Hindsley (2011) [19] examined the impact of negative
shoreline change rate on property prices in Tybee Island, GA considering various cut-off
distances (100 m to 600 m) from the shoreline. Model parameters for cut-off distances
greater than 300 m were found to be statistically insignificant.

Table 1 outlines the variables used in this study along with their sources and descrip-
tions. Variables such as whether the property is a multi-story home, number of bedrooms,
presence of garage, number of bathrooms, and size of the living space were included to
represent the structural attributes of the properties. While sale prices, year of sale, and lo-
cation of the properties were obtained from the Beaufort County Assessor’s Office (BCAO),
various real estate websites, such as Zillow and Trulia, were utilized to extract structural
data. Locational attributes, such as distance from each property to the nearest public beach
access point, whether the property is oceanfront or marshfront, and distance to the nearest
beach, were estimated using ArcGIS Pro software.

Table 1. Variable descriptions and data sources.

Variable Description Source

singfam 1 if property is a single-family home; 0 otherwise Beaufort County Assessor’s
Office (BCAO)

pbaccess Distance to nearest public beach access
point (meters) ArcGIS Pro

footage Size of the living space in the property
(square feet) BCAO

numbed Number of bedrooms Zillow
numbath Number of bathrooms Zillow

garage 1 if property has garage space; 0 otherwise Zillow
mstory 1 if property is single-storied; 0 otherwise Zillow

gated 1 if property is located in a gated community;
0 otherwise Zillow

waterfr 1 if property is oceanfront or marshfront;
0 otherwise ArcGIS Pro

shrate Change in shoreline position (in meters) per year. USGS [12]

shdum 1 if annual change in shoreline position is negative;
0 if positive. USGS [12]

dbeach Distance to the nearest beach (in meters) ArcGIS Pro
disteros shrate*dbeach (in square meter) ArcGIS Pro

flrisk 1 if the property is located where flood risk is high
or very high; 0 if the flood risk is low or very low.

Federal Emergency
Management Agency

(FEMA)
year Year of sale, 1 (2011) to 6 (2016) BCAO

The U.S. Geological Survey (USGS) estimates annual shoreline change rates that can
help researchers, government officials, and the general public to identify areas with higher
risks of coastal erosion. USGS’s estimates of 30-year change in shoreline positions were
used to highlight the areas that experienced negative shoreline changes [21]. Shoreline
change rates in meters per year were spatially joined with the property data using ArcGIS
Pro. As shown in Table 2, the mean annual shoreline change rate (shrate) in the study area is
0.15 with the values ranging from –1.83 to 5.2. It is important to note that while the positive
values indicate accretion, negative values signal eroded beaches. Figure 2 shows the areas
of HHI that have been experiencing negative and positive annual shoreline changes.
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Table 2. Descriptive statistics of the sale prices of the homes sold in the study area and their structural,
locational, and environmental attributes.

Variable Mean Std. Dev. Minimum Maximum

sale price (000s)($) 1354 1141 69.5 7270
Singfam 0.92 0.27 0 1

pbaccess (meters) 749 402 12 1940
footage (square feet) 3562 1763 1118 13,060

numbed 4.23 1.30 1 8
numbath 4.34 1.70 1 9

garage 0.70 0.46 038 1
mstory 0.62 0.49 0 1
gated 0.73 0.45 0 1

waterfr 0.22 0.42 0 1
shrate (meters per

year) 0.15 1.46 −1.83 5.23

shdum 0.44 0.49 0 1
dbeach (meters) 211 125 5 456
Disteros (square

meters) 228 344 −327 3381

flrisk 0.48 0.50 0 1
year 3.39 1.59 1 6

A dummy variable (shdum) was created to distinguish the areas with erosion and
accretion. It was then added to the model to assess the impact of coastal erosion on
property values. Additionally, an interaction term (disteros) was created by multiplying
the shrate and the distance of each property to the nearest beach (dbeach). Including the
distance to the beach variable and shoreline change rates separately within the model
may not be enough to obtain the value of shoreline change rate as it is expected that the
influence of negative shoreline change rate (shrate) on property values will be different at
various distances from the coastline. Relative to households farther from the beach line,
oceanfront and other nearby property owners may view eroded beaches more as a means
of vulnerability to coastal hazards.

A separate dummy variable (flrisk) was created to incorporate the flood risk into the
model. The mean value of flrisk is 0.48, which suggests a balanced mix of risky and non-
risky areas in the study area. Flood data is based on the Federal Emergency Management
Agency’s (FEMA’s) digital flood insurance rate map, where 1 represents the areas with the
least flood risk and 5 represents the most flood risk. Figure 3 shows the areas with high
(rating of 4) or very high (rating of 5) and low (rating of 2) or very low (rating of 1) flood
risks. It is reasonable to assume that property owners are well informed about the flood
risks associated with the properties they purchase, as this information is readily available
to them.



Oceans 2021, 2 154

Oceans 2021, 2, FOR PEER REVIEW 5 of 12 pages 
 

 
Figure 2. Annual shoreline change rates. 

Table 2. Descriptive statistics of the sale prices of the homes sold in the study area and their struc-
tural, locational, and environmental attributes. 

Variable Mean Std. Dev. Minimum Maximum 
sale price (000s)($) 1354 1141 69.5 7270 

Singfam  0.92 0.27 0 1 
pbaccess (meters) 749 402 12 1940 

footage (square feet) 3562 1763 1118 13,060 
numbed 4.23 1.30 1 8 

Figure 2. Annual shoreline change rates.



Oceans 2021, 2 155

Oceans 2021, 2, FOR PEER REVIEW 7 of 12 pages 
 

 
Figure 3. Flood risk map. 

4. Method 

HPM operates on the assumption that the value of a given property is a function of 
the following factors: 
1. The property’s structural attributes, such as lot size, age of home, square footage, 

etc. 
2. Locational characteristics, such as distance to coastline, proximity to the closest 

public or private beach access, etc. 
3. Environmental attributes, such as shoreline change rate, flood risk, etc. 

It is possible to estimate the HPM regression parameters using ordinary least squares 
(OLS) as long as certain characteristics are met. This parametric model assumes that error 

Figure 3. Flood risk map.

4. Method

HPM operates on the assumption that the value of a given property is a function of
the following factors:

1. The property’s structural attributes, such as lot size, age of home, square footage, etc.
2. Locational characteristics, such as distance to coastline, proximity to the closest public

or private beach access, etc.
3. Environmental attributes, such as shoreline change rate, flood risk, etc.

It is possible to estimate the HPM regression parameters using ordinary least squares
(OLS) as long as certain characteristics are met. This parametric model assumes that error
terms are normally distributed with zero mean and constant variance. Log-linear function
forms have been preferred by the past studies due to nonlinear relationship between home
values and independent variables [20,22].
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Multicollinearity, an occurrence of strong intercorrelation among predictors, is an
assumption of the OLS regression model which can be tested by the variance inflation
factor (VIF). The initial model included all the variables listed in Table 2 but the VIF
values of dbeach and disteros signalled multicollinearity. Therefore, the distance variable,
dbeach, was eliminated from consideration since the interaction term, disteros, has more
importance and significance. Additionally, shrate was dropped from consideration due to
its collinearity with shdum. The calculated VIF values of the final independent variables
ensured a low degree of multicollinearity, as shown in Table 3, where each VIF was found
to be less than the threshold of 10 [23].

Table 3. Multicollinearity test results.

Variable Variance Inflation Factors (VIF)

singfam 1.27
pbaccess 1.55
footage 1.56
numbed 2.40
numbath 3.02

garage 1.25
mstory 1.40
gated 1.78

waterfr 1.29
shdum 1.12
disteros 1.25

flrisk 1.12

Checking for the autocorrelation of the errors is an important part of assessing whether
a model is well specified. If autocorrelation is detected, the ordinary least squares assump-
tion that the error terms are uncorrelated is violated. The Durbin–Watson statistic, a
test to detect the presence of autocorrelation in the residuals from a regression analysis,
was conducted, and the score of 1.86 suggests that our dataset has no autocorrelation
present. However, working with spatial data requires close attention to spatial autocor-
relation among dependent variables and/or error terms, which may also violate OLS
assumptions [24].

Figure 4A shows the presence of spatial lag dependency where the price of property
is not only influenced by its attributes but also the attributes of nearby properties. Error
terms of adjacent observations are correlated in Figure 4B. In both cases, OLS assumptions
are violated and would lead to biased and inefficient model estimates.
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Moran’s I test was conducted to check for general spatial dependency, and the test
results are presented in Table 4. A statistically significant value of 0.03 indicates a strong
spatial autocorrelation of residuals. Lagrange multiplier for spatial lag and error dependen-
cies tested positive, confirming the presence of both problems in the model. Statistically
insignificant robust Lagrange Multiplier (LM) test for spatial error indicated that if spatial
dependency is incorporated by adding a spatially lagged dependent variable, the model
accuracy would improve. In other words, by including a “spatial” variable as one of the
covariates in the model, we can devise a model where home sale value is a function of its
attributes and the values of its neighboring properties. This way, the relationship between
exogenous variables and the dependent variable can be examined while controlling for
spatial dependency in the dependent variable. Therefore, a spatial lag model was adopted
to improve the overall accuracy and predictive power of the model.

Table 4. Detection of spatial autocorrelation.

Test Value Probability

Moran’s I (error) 0.13 0.01263
Lagrange Multiplier (lag) 11.02 0.00090

Robust LM (lag) 7.47 0.00627
Lagrange Multiplier (error) 3.76 0.05200

Robust LM (error) 0.2237 0.00361

The endogenous variable is the natural log of the sale price due to nonlinear nature of
the data. Using this specification eliminates the heteroscedasticity problem and allows the
researchers to interpret a per unit change in each control variable on sale price in percentage
terms [25]. After this transformation, the marginal effect for each binary variable should
be calculated using (exp(β) − 1) as suggested by Halvorsen and Palmquist (1980) [26].
Year-fixed effects were included to account for any changes that may have occurred over
time. A dummy variable for each of the neighbourhoods in the study area was accounted
for so locational differences would be controlled.

5. Results and Discussion

OLS, spatial lag, and spatial error models were executed. Since spatial models are
based on the estimation of maximum likelihood, reporting and comparing the respec-
tive log probabilities is more fitting. Spatial lag model had the highest log-likelihood



Oceans 2021, 2 158

(−274), confirming the results of the previous tests that accounting for spatial lag depen-
dency would improve model accuracy. Because the spatial error model had slightly lower
log-likelihood and produced results that were similar to those of the spatial lag model,
Table 5 reports only the results of the OLS (Model 1) and spatial lag (Model 2) regressions.
Although there were some minor differences in the magnitude and significance of the
regression coefficients among Models 1 and 2, the overall results were quite robust.

The estimates of the parameters are generally statistically significant and have ex-
pected signs. The coefficient estimates of dummy variables in parentheses presented in
Table 5 are the recalculated coefficients (exp(β) − 1). Spatial variable, introduced to trans-
form the data and remove the dependency among neighbouring dependent variables, is
highly statistically significant at 1% level. All structural attributes except the presence of
garage have significant impact on property prices. However, garage becomes significant
when the spatial variable, spatial, is entered into the regression model (under Model 2) as a
separate independent variable. Even though the positive sign of the coefficient of distance
to public beach access variable, pbaccess, may seem surprising at first, information about
the neighbourhoods in the study area would help us understand this finding. As a property
is located away from a public beach access point, the property value is estimated to be
increasing, probably because the majority of the properties considered in the study area are
located in gated communities with private access to beaches. This finding is consistent with
the notion that property owners are likely to pay a premium price (17.9%) for homes that
are in gated communities with locational privileges. Because the spatial data for private
beach access points was not available, it was not entered into the model as a separate
exogenous variable.

Table 5. Regression results.

OLS (Model 1) Spatial Lag (Model 2)

Variable Parameter Standard Error Parameter Standard Error

spatial - - 0.26642 *** 0.07606
singfam 0.16516 ** (0.17958) 0.08162 0.16180 ** (0.1756) 0.07912

Pbaccess (meters) 0.00004 *** 0.00001 0.00003 *** 0.00001
Footage (square feet) 0.00004 *** 0.00001 0.00004 *** 0.00001

numbed 0.05296 ** (0.05438) 0.02322 0.05448 ** (0.05599) 0.02250
numbath 0.15054 *** (0.16246) 0.01998 0.14595 *** (0.1571) 0.01938

garage 0.07195 (0.0746) 0.04751 0.07792 * (0.0810) 0.04603
mstory −0.09457 ** (−0.09024) 0.03777 −0.09489 *** (−0.09053) 0.0366
gated 0.20917 *** (0.23265) 0.05844 0.16478 *** (0.17913) 0.05731

waterfr 0.64862 *** (0.9128) 0.67407 0.67407 *** (0.9622) 0.05147
shdum −0.35015 *** (−0.2954) 0.08787 −0.30116 *** (−0.26004) 0.08579

Disteros (square meters) −0.00027 *** 0.00006 −0.00025 *** 0.00006
flrisk −0.15888 *** (−0.1469) 0.04126 −0.17007 *** (−0.1563) 0.04015

location effects yes yes
year fixed effects yes yes

In L −280 −274
R2 0.605 0.628

Observations 495 495

*** p < 0.01, ** p < 0.05, * p < 0.10.

For an average home in the study area, an additional bedroom and bathroom are
expected to increase the value of the property by approximately $76 K and $213 K, respec-
tively (average home price is $1,354,000 in the study area). The presence of a garage, based
on spatial lag model results, account for 8.1% of the value of the property. Single-family
homeowners are expected to pay a 17.6 percent premium because single-family homes have
more valuable features than condominiums. As the size of the living space in a property
increases by 1 square foot, property value is expected to increase by 0.00004% which is the
equivalent of $54 for an average home in the study area. Model (2) findings also show that
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for waterfront properties that are either oceanfront or marshfront, buyers pay a substantial
price premium (96 percent). This finding is consistent with the past studies which produced
evidence that having water views would enhance property values [12,15].

The coefficient of flrisk has the expected sign and is statistically significant at 1%
level. The presence of high or very high flood risk lowers property values by 15.6%. The
price discount is consistent with the previous studies [15,16,27] that flood risk would
reduce property values. Flood zone designations that are available to potential property
owners provide information about the flood risk that seem to affect buyer behaviours and
price decisions.

The coefficient of shdum is highly statistically significant with an estimated value
of –0.26. This finding confirms that shoreline erosion risk is capitalized into residential
property prices. Being located within an area with negative shoreline change rate lowers the
property value by approximately 26% in the study area. Additionally, the interaction term,
disteros, is also statistically significant at 1% level. A statistically significant interaction
term with negative sign indicates that risk of shoreline erosion is capitalized less into
property values as a property is located further away from the coastline. A distance of
214 m was determined to be the cut-off distance after accounting for this diminishing
impact. In other words, for the homes that are located over 214 m from the beach line,
the marginal value of additional change in the shoreline change rate is zero. This may be
partially because properties that are situated further from the shoreline have access to the
larger protective buffer.

6. Discussion and Conclusions

Climate change is one of the Earth’s greatest environmental challenges. Elevated
risks of coastal hazards due to rising average temperatures have been causing damages to
infrastructure and loss of ecosystems for years. Similar to other coastal cities and towns,
HHI, South Carolina’s largest barrier island, has been facing this challenge. Half of the
properties that are in close proximity to the coastline are in areas with high or very high
flood risk. Moreover, a significant portion of the HHI beaches has been eroded at a faster
pace due to sea-level rise.

In this paper, the HPM was implemented to check whether the risks of flooding and
beach erosion were capitalized into residential real estate prices. Spatial autocorrelation
tests were performed to check for any form of spatial dependency that could be present
in the dataset so the right model specification would be chosen to improve model ac-
curacy. Spatial lag specification was adopted to account for spatial dependency among
the neighboring properties. The results of the OLS and spatial error models were not
significantly different than those of the spatial lag model, but they produced slightly lower
statistical accuracy.

The results of the spatial lag model show that flood risk is an important deciding factor
when potential homeowners are actively searching for residential properties. Properties
that are in flood zones are discounted by about 15.6%. This is consistent with the notion
that buyers who pay high insurance premiums for flood risk-prone properties pay lower
prices at the time of sale [28]. For a more comprehensive analysis, it may be worthwhile
to extend the study area by including all the properties on the island, regardless of their
proximity to shoreline.

The findings of this study show that the relationship between beach erosion and
property values is significant in HHI. The negative shoreline change rate, as an indicator
of beach erosion, is observed to reduce the property values that are located within 214 m
of the beach line. Homeowners’ willingness to pay for lower erosion is higher when a
property is located closer to the beach. This effect declines and eventually disappears as
property is located further away from the ocean. It is important to note that future studies
should focus on capturing the perceptions of property owners about erosion risks so that
more realistic willingness to pay estimates can be captured.
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Capitalization of erosion risk is an important first step to produce an accurate cost-
benefit analysis of best management practices to combat this problem. Hard stabilization
and beach nourishment projects are some of the practices that provide not only recreational
benefits to the residents and the property owners but also protection to the nearby prop-
erties serving as buffers from beach erosion. It is critical to know the true cost of coastal
erosion or benefit of reducing its risk so optimal policy strategies and programs can be
implemented. For example, the burden of a potential tax program to finance an adaptive
strategy to lower beach erosion risk can be allocated based on the quantification of the
benefits taxpayers would receive in exchange. The property owners who own oceanfront
or nearby properties could pay more in taxes to finance a stabilization program that would
lower the risk of property damage. Such policy would ensure that those who benefit
the most from owning a property in a coastal location also endure the associated risks of
shoreline change.
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