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Abstract: The blades of the horizontal axis wind turbine (HAWT) are generally subjected to significant
forces resulting from the flow field around the blade. These forces are the main contributor of the
flow-induced vibrations that pose structural integrity challenges to the blade. The study focuses on
the application of the gradient boosting regressor (GBR) for predicting the wind turbine response
to a combination of wind speed, angle of attack, and turbulence intensity when the air flows over
the rotor blade. In the first step, computational fluid dynamics (CFD) simulations were carried out
on a horizontal axis wind turbine to estimate the force distribution on the blade at various wind
speeds and the blade’s attack angle. After that, data obtained for two different angles of attack (4◦

and 8◦) from CFD acts as an input dataset for the GBR algorithm, which is trained and tested to
obtain the force distribution. An estimated variance score of 0.933 and 0.917 is achieved for 4◦ and 8◦,
respectively, thus showing a good agreement with the force distribution obtained from CFD. High
prediction accuracy and less time consumption make GBR a suitable alternative for CFD to predict
force at various wind velocities for which CFD analysis has not been performed.

Keywords: force distribution; computational fluid dynamics; gradient boosting regressor

1. Introduction

The Paris agreement [1] entered into force in November 2016, where a need for an
effective and progressive response to climate change is recognized. B.P. Energy Outlook
2017 [2] claims an increased energy demand in 2035 by 30%, whereas renewables will cover
half the added energy-need. Because of this, there is growing interest in alternative or
renewable energy generation options. Wind energy is one of the most preferred renewable
energy sources among the available renewable energy options, as it has high potential and
comparative cost-benefits [3]. It is predicted that in recent years many countries like the
U.S., China and some of the European Union countries would increase the contribution of
the wind energy portion to their energy demand to about 20% [4].

To increase wind energy share, significant advancements have also been made in recent
years regarding wind turbines’ generation capacity. The wind turbine power generation
capacity has increased dramatically over the last decade, from kW-class (75 kW) to MW
class (5 MW) [5]. A significant reason for the increase in capacity is the increase in the size
of rotors. Over the years, the turbine blades have grown from 17 m diameter to 125 m
diameter, and they will keep increasing in the coming years [6].

However, the increase in the power generation capacity and size of the wind turbines
had presented significant challenges. Most of these challenges and concerns are related
to the rotor blades’ structural integrity due to fluid–structure interaction (FSI) [3,6,7]. The
wind turbine blades are composite structures that rotate in a wind turbine’s circular plane
to produce mechanical energy. Due to the requirement of low weight, the turbine blades are
long, flexible, and thin. As air flows over the blade, a pressure difference is created between
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the two surfaces of the blade, which leads to the rotational motion of the blades. However,
apart from generating mechanical energy, the pressure difference gives rise to aerodynamic
loads, which is responsible for blade deflection [7], giving rise to structural instabilities like
a flutter, aeroelastic instabilities, and vibrations, to name a few [6,8]. The rotor blades are a
key and expensive part of a wind turbine. According to statistics, within the first decade of
installation, a typical wind turbine rotor experiences 2.6 component failure per year [7].
Therefore, the ability to detect damage in wind turbine blades is of immense significance,
making it critical to understand the flow behaviour and the aerodynamic forces occurring
on the rotor blade.

Numerous comprehensive methods have been developed to study the interaction of
fluid and the wind turbine rotor blade. Of these methods, the blade element momentum
(BEM) is widely used [9]. The BEM method is reasonably accurate and highly efficient [6];
due to its high efficiency, the BEM method is widely used to optimize blades [10]. However,
BEM has a significant flaw. It is incapable of providing detailed flow analysis, wake
formation, or flow visualization, which is essential for designing and analyzing the wind
turbine blade [6,7].

Furthermore, BEM is mainly one-dimensional [11]; two-dimensional analysis can be
carried out by assuming the blade’s adjacent span-wise sections are not affected by each
other [12]. However, this assumption is generally valid only for a short span of the blade,
mainly the blade’s central part. Computational fluid dynamics (CFD) overcomes most of
the above mentioned draws backs of the BEM. One of the significant advantages of the
CFD approach is the three-dimensional effect, unsteady flows, boundary layer transition,
turbulence, wake study, and rotational effects, to name a few [11].

Therefore, in the last decade, there has been a surge in the usage and development
of CFD application to understand the fluid-structure interaction of the blade and airflow
around it. CFD is a numerical approach that solves Euler and Navier–Stokes equations.
Hence, it can provide a consistent and realistic visual simulation flow around the turbine
blade. Moreover, CFD can quickly offer a realistic and accurate 3D flow analysis [13]. CFD
is now regularly used in the design in the test phase of wind turbine blades to estimate
the force distribution on the rotating blades; some of these benchmark studies are [14–16].
Some other studies that have used commercial CFD software like ANSYS to predict the
force distribution are [3,11,12,17].

The strength and accuracy of CFD simulations have managed to replace the concept
of prototype making, thereby significantly reducing the research and development costs.
Nevertheless, CFD simulations’ accuracy comes with high computational costs and time,
especially for cases with a complex model and flow physics, such as seen in wind turbine
blades. Flow over the wind turbine blade is described by the Navier–Stokes equations,
which are complex and daunting. There is always a tradeoff between accuracy and cost of
computing [18]. Therefore, the current study’s objective is to augment the CFD simulations
with machine learning (ML) algorithms. The first step in combining ML and CFD is to
generate data sets by carrying out flow simulations using CFD software. The ML algorithm
is trained to compute the airflow parameters/results around a wind turbine blade based
on the simulation data. Therefore, the ML algorithm accelerates the computations without
trading off accuracy.

ML and CFD are combined in many research areas [18–20]. However, machine
learning application to wind energy is developing rapidly, and most of the studies are
concerned with condition monitoring (CM) [21–23]. Nevertheless, a handful of studies
have studied the application of learning methods to understand the aerodynamics around
the wind turbine blade. Clifton, Kilcher [24] used regression trees to predict the wind
turbine response to a combination of wind speed, turbulence intensity, and wind shear.
Similarly, Ti, Deng [25] used machine learning and CFD to develop new wake velocity and
turbulence models with high accuracy and good efficiency to improve the turbine wake
predictions. Although these studies provided vital information, significant work is yet
to be carried out to better understand some of the advantages or drawbacks of applying
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machine learning and the CFD approach to understand aerodynamics and its impact on the
blade’s structural integrity. In the context mentioned above, the current study focuses on
the relatively new and novel approach of linking CFD and gradient boosting regressor (a
type of surrogate model) to reduce the computational time estimating the force distribution
on the turbine blade due to fluid flow. The focus in the present article is only on the CFD
part and not the structural simulations, as the objective is to check the applicability of
gradient boosting regressor to the current application.

2. Theory

The wind turbine blade is aerodynamic in shape; the front and back surface are of
different curvatures, like that of an airplane wing. Therefore, when the air flows over the
wind turbine blade, air velocity over the front surface is greater than that of the rear surface.
The difference in the air velocity between the surfaces would give rise to a difference in
pressure, which would create a force that gives the kinetic energy to the rotor blades.

In addition to providing the rotational motion to the rotor blade, the air flow over
the blade also gives rise to various loads, which may be broadly classified as aerodynamic
loads, centrifugal (inertia) loads, and loads arising due to turbulence [26,27]. Figure 1
shows a schematic of how air flow would result in various loads and the consequences of
these loads on the rotor blade’s structural integrity. The aerodynamic loads arise from the
lift (perpendicular to wind direction) and drag (parallel and along the direction to wind)
forces. The lift and drag force would change along the span of the blade; this gives rise a
moment and result in the bending of the blade [27]. The bending moment would lead to
stress at the root of the blade, and if the wind speed varies, then the load and the stress
would also change. Centrifugal loads arise due to the rotating motion of the blade. The
centrifugal load would cause moments that would rise to the pitching of the blade [26]. The
pitching may push the blade out of the rotating plane and would lead to more abnormal
bending of the blade. The turbulence of the wind and associated phenomena like wake are
common in wind turbine aerodynamics. The turbulence causes a fluctuation of pressure
difference across the blade’s faces, leading to dynamic loading, causing effects like vibration
and fatigue [26]. Therefore, the most crucial factor that influences a wind turbine system’s
lifetime and reliability is the loads generated by the flow of air over the blade, which is
dependent predominantly on wind conditions [27].
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Figure 1. Importance of aerodynamic study.

Figure 2 shows the step-by-step methodology adopted in the present study to combine
machine learning and CFD. Section 3 gives the details of the CFD, and the details of the
machine learning will be in Section 4.
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3. Computational Fluid Dynamics (CFD) Methods

The current section describes various aspects of CFD simulation, like the model, mesh,
input parameters, simulation methodology, and verification. The CFD simulation is carried
out using ANSYS CFX 2020 R2 version.

3.1. Wind Turbine Rotor Model

A horizontal rotational axis wind turbine is used for the analysis. The blade used in
the current study comprises of NACA series (9417) obtained from the open-source online
library. The blade is twisted with a top twist of 11o from root to tip. The blade radius of the
rotor is 61 m. Figure 3 shows the model of the blade used in the study. As the objective here
is to carry out a CFD study and focus on ML, the internal structure like spar, along with
material properties, has been neglected, and only the outer profile is used for the study.
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3.2. Computational Domain and Meshing

The wind turbine model is symmetrical about its centre of rotation; therefore, the
three blades can be reduced to a single blade at 120◦ radial stream with periodic sides
to reduce the solution time. Figure 4 shows the computational domain along with the
boundary conditions; further details of the boundary conditions and setup are provided in
Section 3.2. The blade’s location is 6.0 diameters from the inlet and 15.0 diameters from the
outlet, whereas the top wall is 6.0 diameters from the tip of the blade. The computational
model has the blockage ratio (ratio of the frontal area of the blade and the total inlet area) is
approximately 0.004 (0.4%), which is sufficiently low not to have any artificial acceleration.
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Figure 5 shows the mesh distribution at critical locations used for CFD modelling. An
unstructured mesh is used with 15 layers of inflation. The first layer’s size is selected so
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determine the appropriate size of the mesh, a mesh sensitivity analysis was carried out; the
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3.3. Simulation Methodology

The CFD simulation for the present work was carried out using the ANSYS 2020
R2 CFX package. A steady-state simulation with a constant rotational speed of the rotor.
The frozen rotor option of CFX was used, which is a steady-state method and uses the
rotating reference frame to save the computational resources by converting transient turbo-
machinery flow into a steady state. The frozen rotor option will pass the true flow to
downstream and the other way around so that the wake effect downstream of the blade is
captured. A shear-stress transport (SST) turbulence model was used to solve the turbulence.
SST is a robust two-equation model, which has the benefit of switching from a k-ε turbulence
model (well suited for far field) to a k-ω turbulence model (suited for boundary layer) [6].
As the flow over wind turbines is not high speed, it would be easy to justify the use of an
incompressible flow simulation. However, even though the flow is at a low speed, but it is
high turbulence, where abrupt pressure changes occur in a short distance. Therefore, in
the present study, a compressible flow option is used. The basic boundary conditions are
shown in Figure 4. The rotor is given a constant rotational speed of 15 rpm (frozen rotor),
with inlet velocity that varied from 0–20 m/s. The pressure is held at atmospheric at the
outlet. All the walls are modelled as no-slip. A 1 × 10−4 convergence criterion was used
for the simulation. Once the solution was converged, and results obtained, the results such
as forces, pressure, velocity, and turbulence energy were plotted and will be presented in
the results section of this article.

A mesh sensitivity analysis was also carried out to select an optimum mesh. For all the
mesh type, the growth rate (1.1) and max size (5 m) was fixed, and only the minimum face
size was varied from 0.001m to 0.5 m. For each of the mesh types, simulations were carried
out at a steady state at 5 m/s wind speed, with a static rotor to get the axial Force on the
blade (mid-span), Table 1 shows the results. It can be seen that after the minimum mesh size
of 0.01 m the change in axial force starts to reduce. There is approximately 7.5% difference
between 0.01 and 0.005 m size, and 0.25% between 0.005 m and 0.001 m. Since there is a
negligible change between 0.005 m and 0.001 m, for the advantage of computational time,
0.005 m is chosen for the rest of the simulations in the present study.

Table 1. Data from mesh sensitivity analysis.

Minimum Mesh Size (m) Total Elements (Million) Axial Force (N)

0.5 1.5 36,978
0.1 2.7 53,614

0.01 4.8 75,063
0.005 6.9 80,896
0.001 10 81,105
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For the current study, the wind speed was varied from 5–20 m/s for two angles of
attack of blade 4 and 8 degrees, at a constant rpm of 15.

3.4. Gradient Boosting Regressor

Boosting is a powerful technique for combining multiple base classifiers to produce a
form of the committee whose performance can be significantly better than that of any base
classifier [28]. The main idea of boosting is to add new models to the ensemble sequentially.
At each particular iteration, a new, weak, base-learner model is trained with respect to
the error of the whole ensemble learnt so far [28]. Gradient boosting builds the model in
a stage-wise fashion, as other boosting methods do, and generalizes them by allowing
optimization of an arbitrarily differentiable loss function [29]. It uses the gradient descent
method to solve the minimization problem and produces a prediction model in the form
of an ensemble of weak prediction models, typically decision trees. As described in the
earlier section of the paper, the authors have employed the gradient boosting regressor
(GBR) to predict the axial force acting on the turbine blade. GBR is a generalization of
gradient boosting and involves three elements, namely, a loss function (which needs to be
optimized), a weak learner (used for making predictions) and an additive model (to add
weak learners to minimize the loss function) [30]. The principal idea behind this algorithm
is to construct the new base-learners to be maximally correlated with the negative gradient
of the loss function, associated with the whole ensemble [30]. The loss functions applied
can be arbitrary but, to give better intuition, if the error function is the classic squared-
error loss, the learning procedure would result in consecutive error-fitting. In general,
the choice of the loss function is up to the researcher, with both a rich variety of loss
functions derived so far and the possibility of implementing one’s own task-specific loss.
The detailed mathematical formulation of GBR is as follows. Consider an additive model
of the form [29]:

F(x) =
M

∑
m=1

γmhm(x) (1)

where hm(x) are the basis functions, which are usually called weak learners in the context
of boosting. GBR uses decision trees of fixed size as weak learners. Decision trees have
a number of abilities that make them valuable for boosting, namely the ability to handle
data of mixed type and the ability to model complex functions. As with other boosting
algorithms, GBR builds the additive model in a forward stage-wise fashion [29]:

Fm(x) = Fm−1(x) + γmhm(x) (2)

At each stage, the decision tree hm(x) is chosen to minimize the loss function L, given
the current model Fm−1 and its fit Fm−1(xi).

Fm(x) = Fm−1(x) + arg min
h

n

∑
i=1

L(yi, Fm−1(xi)− h(x)) (3)

The initial model F0 is problem-specific, for least-squares regression, one usually
chooses the mean of the target values. Given any differentiable loss function L, the analyst

starts with an initial model, say F(x) = ∑n
i=1 yi
n . He/she then iterates (until convergence

is achieved) and calculates negative gradients −g(xi) = − ∂L(yi , F(xi))
∂F(xi)

, using a gradient
descent method. Finally, the analyst fits a regression tree h to the negative gradients−g(xi).

GBR attempts to solve this minimization problem numerically via gradient descent.
The gradient descent direction is the negative gradient of the loss function evaluated at the
current model Fm−1, which can be calculated for any differentiable loss function:

Fm(x) = Fm−1(x) + γm

n

∑
i=1
∇FL(yi, Fm−1(xi)) (4)



Vibration 2021, 4 255

4. Results and Discussions

In this section, the results of both CFD and Machine Learning will be presented. First,
the CFD results like velocity profile, pressure distribution, and force will be discussed; this
will be followed by outcomes of the machine learning.

Figure 7 shows the velocity profile around the turbine blade at three sections along
the span of the blade (20% (a), 50% (b) and 90% (c) of the span) at wind speeds 5 m/s and
at 4◦ angle of attack. For both 5 m/s is a large turbulence region and formation of wake
especially near the wake immediately downstream of the blade. Furthermore, it may also
be noticed that the strength of turbulence increases along the length of the blade, with the
maximum occurring near the tip. This is due to the twist of the blade. Therefore, there
would be the difference in loading along the span of the blade, and this would influence
the performance of the rotor and its power generation [31].
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Figure 7. Velocity profile and wake formation at three locations of the span, (a) 20% chord from root,
(b) 50% chord length from rot, (c) 90% chord length at 5 m/s (4◦ angle).

A similar observation is also seen in Figure 8 for the wind speed of 15 m/s at 4◦

angle of attack. However, now the turbulence is stronger, and there are more “near” wake
immediately downstream of blade even at 20% section, which was not observed at 5 m/s
(Figure 7a). Therefore, the stresses arising from this strong near wake and high turbulence
would be higher for 15 m/s compared to 5 m/s.

Figure 9 shows the similar results at 15 m/s and 8◦. Compared to 4◦ at 8◦ there are
two main changes, first due to the change in the angle of attack there is a slightly larger
acceleration of air around the leading and trailing edge of the blade. Secondly, there is
stronger “near” wake present at the tip region (Figure 9c) at 8◦ compared to 4◦ (Figure 8c).
This indicates that as inclination changes there would be more loading near the tip of the
wind, which may cause severe bending stress.
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Figure 10 shows the pressure distribution over the front/leading (a) and rear (b) face
of the blade a 15 m/s (4◦). It is observed that on the leading face the pressure varies along
the chord (width of the blade), while on the rear face the pressure varies along the span,
with the lowest pressure near the tip region. The span-wise and chord-wise variation of
pressure would give rise to both bending and twisting moment on the blade.
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Figure 10. Pressure distribution on the leading (a) and rear (b) face of the blade at 15 m/s.

Figure 11 shows the force is axial direction at different location along the span at 4◦ for
a wind velocity range of 5–20 m/s. The 0 in the horizontal axis represented the location of
root and 1.0 represent the tip location. As expected, the force on the blade is proportional to
the wind speed and for each wind speed the maximum force is near the 40% location of the
span, the force reduces on the either side of this location. Similar profile is also observed
for 8◦ as shown in Figure 12, at same range of wind speed. The only difference is the larger
magnitude and slight shift in the location of the maximum axial force location from near to
40% at 4◦ to near to 25% at 8◦. This can be related to the formation of stronger near wake at
8◦ at 40% location especially at leading and trailing edges as seen from Figure 9b.

The forces presented in Figures 11 and 12 shall now be used as the input dataset for
the GBR algorithm.

Rather than dividing the dataset into training and testing, authors used k-fold cross
validation (10 folds and 10 repeats) technique for evaluating the performance of the GBR.

As can be seen from Figures 13 and 14 for both the datasets, at around 500 estimators,
the root mean square error (RMSE) for the data set becomes constant, hence 500 estimators
are used for GBR. In order to compare the accuracy of the regression algorithms, three
metrics, namely, RMSE, mean absolute error (MAE), explained variance score (EVS) are
used. Mathematically, these are written as:

RMSE =

√√√√(
∑n

i=1(yi − ŷi)
2
)

n

MAE =
∑n

i=1|yi − ŷi|
n

(5)
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EVS = 1− Var(yi − ŷi)

Var(yi)

Vibration 2021, 4 FOR PEER REVIEW  11 
 

 

of root and 1.0 represent the tip location. As expected, the force on the blade is propor-
tional to the wind speed and for each wind speed the maximum force is near the 40% 
location of the span, the force reduces on the either side of this location. Similar profile is 
also observed for 8° as shown in Figure 12, at same range of wind speed. The only differ-
ence is the larger magnitude and slight shift in the location of the maximum axial force 
location from near to 40% at 4° to near to 25% at 8°. This can be related to the formation 
of stronger near wake at 8° at 40% location especially at leading and trailing edges as seen 
from Figure9b. 

 
Figure 11. Axial force distribution along the span at the centerline of span for 4o at various wind 
speeds. 

 
Figure 12. Axial force distribution along the span at the centerline of span for 8° at various wind 
speeds. 
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For optimal performance of the GBR, the value of RMSE and MAE should be as small
as possible and the value of EVS should be closer to 1. The value of the three metrics for
GBR for the analysis is shown in Table 2.

Table 2. Gradient boosting regressor (GBR) prediction accuracy metrics for 4 degree and 8 degree.

Angle of Attack RMSE MAE EVS

4 Degree 5281 4845 0.933
8 Degree 5386 4077 0.917

Finally, the GBR model is trained and tested on the dataset, and the plots of force
predicted by CFD and GBR for two angles of attack is shown in Figures 13 and 14. As can
be seen from Figures 15 and 16, there are very few outliers and in general the trend between
the force predicted by CFD and GBR is almost linear, thus indicating good prediction
accuracy of the GBR. The authors wish to express that they compared 12 different machine
learning algorithms, details of which can be found in [32]. Since GBR was the most accurate
algorithm, it was used to estimate the force acting on the wind rotor blade.
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5. Summary and Conclusions

The study focuses on demonstrating the ability of machine learning algorithm (gradi-
ent boosting regressor in this case) to predict the wind turbine response to a combination
of wind speed, angle of attack, and turbulence intensity when the air flows over the rotor
blade. The focus and novelty of the present study is in the machine learning part. CFD sim-
ulations were carried out to estimate the axial force for the wind speed range of 5–20 m/s,
for two different orientations of the blade with regard to wind direction.

GBR was successful in satisfactorily replicating the Force estimated by CFD. High
prediction accuracy and less time consumption makes GBR a suitable alternative for CFD
to predict force at different wind velocities for which CFD analysis has not been performed.
In future work, the authors wish to extend the current work by:

1. Improving the prediction accuracy of GBR by employing hyperparameter tuning.
2. Utilizing the force predicted by GBR to estimate vibration-induced stresses in the

blade, which in turn can be utilized for estimating fatigue life of the blades by per-
forming probabilistic crack growth analysis. Thus, the research presented in this
manuscript forms the foundation of the future research centered around predicting
vibration-induced fatigue failure of the rotor blades.
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