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Abstract: This review covers the scope of multiscale computational fluid dynamics (CFD), laying the
framework for studying hydrodynamics with and without chemical reactions in single and multiple
phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics
at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches,
the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing
and turbulence equations, is described for single and multiple phases. The Reynolds-averaged
Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented,
which is commonly used for industrial flow conditions. Following the general CFD theories based on
the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains
is introduced. Next, the applications of single-scale CFD are presented for chemical and biological
processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and
structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized
beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the
coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed.
The need for experimental validation of CFD results is also presented to lay the groundwork for digital
twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD.

Keywords: computational fluid dynamics (CFD); Eulerian continuum fluid; volume of fluid (VOF);
multiscale simulation; multiphase flow; multiphysics; chemical and biological processes

1. Introduction

Many scientific problems have intrinsically multiscale nature [1,2]. This multiscale nature often
leads to multiple spatial and temporal scales that cross the boundaries of continuum and molecular
levels [3]. Multiscale simulations cover quantum mechanics, molecular dynamics (MD), coarse-grained
particle dynamics, and continuum mechanics [4,5]. Multiscale modeling in science and engineering
couples several methods that produce the best predictions at each scale [6], which can then be applied to
materials engineering [7], computational chemistry [8], systems biology [9,10], molecular biology [11],
drug delivery [12], semiconductor manufacturing [13], reaction engineering [14], fluid flow [5,15],
and process engineering [2,16,17].

Multiscale modeling has been used in the form of sequential and concurrent couplings [4,15]. In a
sequential coupling framework, often referred to as parameter passing between scales, the macroscale
model uses a small number of parameters calculated in the microscale model. The concurrent coupling
strategy computes several scale models simultaneously [1,4,16]. Concurrent coupling is preferred
over sequential coupling when the missing information is a function of many variables. Concurrent
coupling is a powerful approach but it is also computationally prohibitive [1].
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Delgado-Buscalioni et al. (2005) presented a multiscale hybrid scheme coupling MD in a subdomain
with computational fluid dynamics (CFD) in a continuum fluid domain [1]. Nanofluids typically
employed as heat transfer fluids include multiphysics such as drag and lift forces between liquid and
nanoparticles and Brownian, thermophoretic, van der Waals, and electrostatic double-layer forces [18].
Challenge remains in nanofluid flow simulations using a CFD model that includes multiphysics and
a multiscale CFD model. Tong et al. (2019) reviewed multiscale methods divided into a domain
decomposition scheme and a hierarchical scheme in fluid flows with heat transfer for coupling MD
with particle-based mesoscale methods such as the lattice Boltzmann method (LBM) and CFD [15].
LBM using the particle distribution function is suitable for simulating fluid flows involving interfacial
dynamics and complex boundaries [15,19]. The fundamental idea of LBM is that the macroscopic
dynamics of a fluid are the result of the collective behavior of many microscopic particles in the
system [19]. Thus, by integrating the particle momentum space, the particle distribution function
(Boltzmann transport equation) at the microscopic scale is linked to the continuous fluid dynamic
properties such as density, velocity, and energy at the macroscopic scale [3,20]. LBM is an alternative
approach in CFD, which has been applied to fluid flows in porous media, microfluidics, and particulate
flows [19,20]. However, because CFD based on LBM focuses on the microscopic domain with complex
boundary conditions, macroscopic Eulerian CFD is preferred for investigating hydrodynamics on the
process level [2,15].

Lagrangian CFD approaches such as the discrete element method (DEM) and the discrete phase
model (DPM) solves the Newton’s second law of motion for each particle to identify the trajectories of
the particles. The Lagrangian model is normally limited to a relatively small number of particles (less
than 105 particles) because of the computational expense [17,21]. This review focuses on the Eulerian
CFD for the continuum phase in chemical processes, excluding the more sophisticated methods such
as the LBM and Lagrangian approaches.

Eulerian CFD has become a powerful and important tool for simulating and predicting fluid
behaviors in chemical and biological processes [22]. Eulerian CFD provides the average quantities at
the equipment-scale that are of practical values to engineers [23]. CFD is used for investigating the
hydrodynamics of a process following geometrical and/or operational modifications [22,24]. CFD has
become crucial for understanding physical phenomena in two- (2D) and three-dimensional (3D)
geometries and for scaling up, optimizing, and designing chemical and biological processes [25].
However, CFD models must be validated by comparing the simulation results with the experimental
data to provide meaningful information [26]. Modeling, meshing, the physical properties, and selection
of a suitable turbulence model play an important role in CFD analysis.

The Eulerian CFD model is represented by the mass, momentum, and energy conservation laws
described by partial differential equations (PDEs) in 2D or 3D space. As the numerical method to
convert PDEs into a set of algebraic equations (AEs), the finite element method (FEM) [27,28] has been
traditionally used to investigate the mechanical and structural properties of materials, whereas the
finite volume method (FVM) [29], which ensures conservative fluxes within a finite volume, has been
often used for fluid dynamics such as Eulerian CFD.

Fluid dynamics are governed by the Navier–Stokes (NS) equation representing the conservation
of momentum. Turbulence is involved in the NS equation to consider random fluctuations of
fluid motion [3]. There are several turbulence equations, such as the direct numerical simulation
(DNS), large eddy simulation (LES) [30], and Reynolds-averaged Navier–Stokes (RANS)-based k-ε
models. The uncertainty of RANS-based k-ε models, which originates from information loss in the
Reynolds-averaging process, was discussed by Xiao and Cinnella (2019) [31].

Multiphase physics is omnipresent in both environmental and engineering flows [32]. As the
precision and accuracy of manufacturing techniques progress, micro- and nanotechnologies become
crucial for providing engineering solutions to problems across different industrial sectors [3].
The multiscale CFD approach has been applied to various disciplines for more accurate solutions
than can be obtained using single-scale modeling. Ngo (2018) presented multiphase, multiphysics,
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and multiscale CFD simulations for gas-solid fluidized beds, steam methane reforming reactors,
and impregnation dies for carbon fiber production [29,33]. Da Rosa and Braatz (2018) [34]
proposed a multiscale CFD model for a continuous flow tubular crystallizer. The micromixing
model, energy balance, and population balance equation (PBE) were coupled with the CFD model.
Haghighat et al. (2018) [35] combined a 3D CFD model for smoke flow and a 1D fire event model as
a far-field boundary condition to predict hydrodynamics in a road tunnel. Hohne et al. (2019) [36]
combined a generalized two-phase flow boiling model with CFD to predict the breakup, coalescence,
condensation, and evaporation mechanisms in a heated pipe. Uribe et al. (2019) [37] compared
three different CFD models (heterogeneous micropores model, pseudo-homogenous catalyst particle
model, and single-scale reactor model) in a trickle bed reactor (TBR) to show its multiphysics and
multiscale nature.

The behavior of the macroscale flow is affected by microscale physical processes, which also leads
to multiscale CFD modeling [3]. Multiscale behavior with complex physical phenomena, which are
highly interrelated [17], appears in process engineering. For example, Figure 1 illustrates a carbon
fiber (CF) production process [29,33] from a multiscale point of view. Figure 1a shows CF tape with a
width of 100 mm as the final product. Fifteen tows enter the impregnation die and are impregnated
with a polymer resin (see Figure 1b). The CF tape is produced from the die after it is grooved, spread,
pressed, and cooled [29]. One tow having a width of 6 mm and a thickness of 130 µm is shown in
Figure 1c, magnified from Figure 1b. A microscale representative element volume (REV) with 128
randomly distributed CF filaments (7 µm in diameter) is depicted in Figure 1d. A macroscale Eulerian
CFD can be used for the impregnation die (Figure 1b) to investigate the hydrodynamics of the process,
whereas a microscale Eulerian CFD can be applied to the creeping flow of the resin inside the tow
(Figure 1d). In the concurrent coupling framework, the macro- and microscale CFD models are solved
simultaneously or the two models exchange information at each time and space. If the tow domain is
assumed to be a uniform porous medium, the permeability of the resin through the tow is needed in
the macroscale porous CFD model. In the sequential coupling framework, the permeability computed
from the microscale porous CFD model is used in the macroscale CFD model [29].
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Figure 1. Impregnation die for carbon fiber (CF) tape production from a multiscale point of view
(modified from Ngo et al. (2018) [33]). (a) CF tape; (b) impregnation die; (c) mesh structure around one
tow; and (d) CF tow representative element volume (REV) on a microscale.

When the different models at different scales are coupled together, sequentially or simultaneously,
some errors often appear at the interface where the two models meet [4]. One of the challenges is to
determine how the multiscale models can be coupled smoothly. Section 3.5 shows an example of the
coupling strategy.
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Many reviews in the Eulerian CFD simulation have been recently reported. Ferreira et al. (2015)
reviewed gas-liquid CFD simulations without electrochemical reactions in proton exchange membrane
(PEM) fuel cells [38]. Karpinska and Bridgeman (2016) [39] reported CFD studies on activated sludge
systems in a wastewater treatment plant (WWTP). Pan et al. (2016) presented gas-liquid-solid CFD
models for fluidized-bed reactors [23]. Sharma and Kalamkar (2016) [40] used gas-phase CFD models
to optimize geometrical and flow parameters that led to designing a roughened duct for the best
thermohydraulic performance. Yin and Yan (2016) [41] reviewed gas-phase CFD studies on oxy-fuel
combustors in a power plant. Uebel et al. (2016) reported the CFD-based multi-objective optimization
of a syngas conversion reactor [42]. The interplay between electrostatics and hydrodynamics in
gas-solid fluidized bed was reviewed by Fotovat et al. (2017) [43]. Pires et al. (2017) [44] addressed the
recent progress in CFD modeling of photo-bioreactors for microalgae production. Bourgeois et al. (2018)
reviewed CFD models in gas-filling processes, investigating the temperature evolution of the gas and
the tank wall during H2 filling [26]. Malekjani and Jafari (2018) presented recent advances in CFD
simulations with heat and mass transfers of food-drying processes [45]. Pinto et al. (2018) [28] applied
a CFD approach to physical vapor deposition (PVD) coating processes. Ge et al. (2019) reviewed
the general features of multiscale structures in particle-fluid systems [17]. Mahian et al. (2019) [5,18]
reported recent advances in modeling and simulation of nanofluids which are a mixture of a common
liquid and solid particles less than 100 nm in size, focusing on 3D Eulerian CFD models for thermal
systems [5]. Drikakis et al. (2019) presented the application of CFD to the energy field [3], integrated
together with molecular dynamics and LBMs. Lu et al. (2019) [46] and Wang (2020) [47] reviewed
Eulerian CFD approaches for dense gas-solid flows, providing a concise introduction to multiscale
methods and highlighting the effects of mesoscale structures (gas bubbles and particle clusters) on the
gas-solid Eulerian CFD model, focusing on the energy minimization multi-scale (EMMS) method.

Nevertheless, few researchers have reviewed Eulerian CFD studies applied to micro- and
macroscale hydrodynamic problems coupled with each other. This review covers the broad scope
of CFD for chemical and biological processes. In particular, it focuses on (i) multiscale CFD studies
in the past decade, (ii) continuous phase rather than discrete phase, which can be formulated by
Eulerian and volume of fluid (VOF) models, (iii) incompressible fluids rather than compressible
fluids, and (iv) applications to chemical and biological processes. In this review, multiscale CFD
encompasses a physical domain described by a continuum, excluding molecular, coarse-grained
particles, and mesoscale particle dynamics at the individual scale. Eulerian CFD models in single
and multi-phases are first presented, followed by applications of the Eulerian CFD to chemical and
biological processes, and finally the challenges and perspectives of multiscale CFD are discussed.

2. Eulerian CFD Models

The main CFD equations are derived from the first-principles laws for mass, momentum,
and energy conservations in an infinitesimal volume of space [3], which are called the governing
equation. The Reynolds averaged Navier–Stokes (RANS) fluid governing equations are often used in
Eulerian CFD studies. The CFD models are described for single and multiple phases with the gas,
liquid, and solid phases. The standard k-ε turbulence equation is presented as an example of the
RANS-based turbulence equations.

2.1. Single-Phase Eulerian CFD Model

A gas or liquid phase as a continuum is modeled by a continuity equation, a Navier–Stokes (NS)
momentum equation, and an energy equation [24,48]. Table 1 shows the Eulerian CFD model for an
incompressible fluid. The density (ρ) is constant, and the velocity vector (

→
u ) in 2D or 3D is solved from

the NS equation. The stress tensor (
=
τ) is defined with the molecular (µ) and turbulent (µt) viscosities for

the turbulent flow. The turbulent kinetic energy (k) is described in Section 2.5, and
→
g is the acceleration

of gravity. The temperature (T) is obtained from the energy equation, Equation (T1-3), including the
convective energy (the first term in the right-hand side), the diffusive energy with conduction and
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viscous dissipation (the second term in the right-had side), and the heat sources (Sh) such as reaction
heat and radiation. The cp and λ are the heat capacity and effective conductivity, respectively.

Table 1. Single-phase Eulerian computational fluid dynamics (CFD) model [24,48].

Continuity equation: ρ
→

∇·
→
u = 0 (T1-1)

Momentum equation: ρ ∂∂t
→
u = −ρ

→

∇·

(
→
u
→
u
)
−
→

∇P +
→

∇·
=
τ + ρ

→
g

where
=
τ = (µ+ µt)[

(
→

∇
→
u +

→

∇
→
u

T
−

2
3

(
→

∇·
→
u
)=

I
)
−

2
3ρk

=
I

(T1-2)

Energy equation: ρcp
∂T
∂t = −

→

∇·
→
u
(
ρcpT + P

)
+
→

∇·

(
λ
→

∇T +
=
τ·
→
u
)
± Sh (T1-3)

The equation of state (EOS) is needed to connect the state variables of pressure (P), volume (V),
and temperature (T). As a result that Equation (T1-2) represents three equations for four unknowns
(ux, uy, uz, and P) with Equation (T1-1) as a constraint on the velocity, the semi-implicit method for a
pressure-linked equation (SIMPLE) or the pressure implicit method with splitting the operators (PISO)
is often used to link the velocity and pressure [3,49].

2.2. Gas-Liquid Eulerian CFD Model

Gas-liquid phases are modeled by the Eulerian approach assuming that the two phases flow as
non-interpenetrating or interpenetrating continua. The Eulerian model assuming non-interpenetrating
continua is often called the volume of fluid (VOF) method, which is a surface-tracking technique for
immiscible fluids (hereafter VOF-CFD). The Eulerian model assuming interpenetrating continua is
the Eulerian multiphase approach solving the continuity and momentum equations at each phase
(hereafter EM-CFD).

The VOF-CFD model in an incompressible gas-liquid phase [33,50] is presented in Table 2.
The VOF-CFD model relies on the assumption that the two phases do not interpenetrate [33],
as mentioned earlier. The gas and liquid phases are considered as the primary and secondary phases,
respectively. The VOF-CFD typically solves a single set of continuity, momentum, and energy (E)
equations weighted by the phase fraction (α) [51]. The volume fraction of the secondary phase (αL)
is solved by Equation (T2-2), which is a continuity equation for the liquid phase where the interface
between the phases is captured.

Table 2. Volume of fluid (VOF)-CFD model for gas-liquid phase [33,50].

Continuity equation:
→

∇·
→
u = 0 (T2-1)

Volume fraction equation: ∂αL
∂t = −

→

∇·

(
αL
→
u
)
−
→

∇·
→
u cαL(1− αL)

where the sharpening velocity (
→
u c) is

→
u c = Cb

→
uc

→

∇αL

b
→

∇αLc
and αL + αG = 1

(T2-2)

Momentum equation:

ρ ∂∂t
→
u = −ρ

→

∇·

(
→
u
→
u
)
−
→

∇P + (µ+ µt)
→

∇·

[(
→

∇
→
u +

→

∇
→
u

T)
−

2
3

(
→

∇·
→
u
)=

I
]
−

2
3ρk

=
I + ρ

→
g +

→

F sur f
(T2-3)

where the surface tension force is
→

F sur f =
→

∇·
=
τsur f (T2-4)

with the surface stress tensor of
=
τsur f = σ


∣∣∣∣∣→∇αL

∣∣∣∣∣=I −
→

∇αL·

(
→

∇αL

)T

∣∣∣∣∣→∇αL

∣∣∣∣∣
 (T2-5)

Energy equation: ρ ∂E
∂t = −ρ

→

∇·
→
uE +

→

∇·

(
λ
→

∇T +
=
τ·
→
u
)
± Sh (T2-6)

Single properties (density): ρ = αGρG + αLρL (T2-7)
(viscosity): µ = αGµG + αLµL (T2-8)
(conductivity): λ = αGλG + αLλL (T2-9)
(energy): E = (αGρGEG + αLρLEL)/ρ (T2-10)



ChemEngineering 2020, 4, 23 6 of 27

The surface tension force (Fsur f ) can be defined as a continuum surface stress (CSS) [50] tensor

(
=
τsur f ) or a continuum surface force (CSF) [33]. The CSS method represents the surface tension force in a

conservative manner and does not require an explicit calculation of the surface curvature. For turbulent
flows, the turbulence equation is added to the VOF-CFD model (see Section 2.5).

Table 3 lists the EM-CFD model for the gas-liquid phase. The governing equation includes the
continuity equation for the total mass conservation, the momentum equation with drag and non-drag
forces, and the energy equation for each phase. The gas phase is considered as the secondary phase

(or dispersed phase). The interfacial forces (
→

FGL) between the gas and liquid phases in Equation

(T3-3) can be formulated by the linear sum of the drag force (
→

FD), the lift force (
→

FL) emerging from
the interaction between the gas (or bubble) and vorticity in the liquid [52], the wall lubrication force

(
→

FW) pushing bubbles away from the wall, and the turbulent dispersion force (
→

FT) accounting for

the turbulent momentum transfer between turbulent eddies and bubbles [53].
→

FD is proportional to
the difference between the gas and liquid velocities in Equation (T3-4). The gas-liquid momentum
exchange coefficient (KGL) contains the drag coefficient (CD) [53]. QGL in Equations (T3-8) and (T3-9) is
the heat transfer between the gas and liquid phases.

Table 3. Eulerian multiphase (EM)-CFD model for gas-liquid phase [53,54].

Continuity equation: ρG
∂
∂t (αG) = −ρG

→

∇·

(
αG
→
u G

)
αL = 1− αG

(T3-1)

Momentum equation:

ρG
∂
∂t

(
αG
→
u G

)
= −ρG

→

∇·

(
αG
→
u G
→
u G

)
− αG

→

∇P +
→

∇·
=
τG + ρGαG

→
g −

→

F GL

ρL
∂
∂t

(
αL
→
u L

)
= −ρL

→

∇·

(
αL
→
u L
→
u L

)
− αL

→

∇P +
→

∇·
=
τL + ρLαL

→
g +

→

F GL

where
=
τG = αGµG

(
→

∇
→
u G +

→

∇
→
u

T
G −

2
3

(
→

∇·
→
u G

)=
I
)
−

2
3ρGk

=
I ,

=
τL = αLµL

(
→

∇
→
u L +

→

∇
→
u

T
L −

2
3

(
→

∇·
→
u L

)=
I
)
−

2
3ρLk

=
I ,

(T3-2)

→

F GL =
→

F D +
→

F L +
→

F W +
→

F T, (T3-3)

→

F D = KGL
(
→
u G −

→
u L

)
, KGL = 3

4
CD
db
ρLαGαL

∣∣∣∣→u G −
→
u L

∣∣∣∣, (T3-4)

→

F L = −CLρLαG
(
→
u L −

→
u G

)
×

(
→

∇ ×
→
u L

)
, (T3-5)

→

F W = CWρLαG

∣∣∣∣(→u L −
→
u G

)
wall

∣∣∣∣2→n W , (T3-6)

and
→

F T = CTKGL
µt,L
σGLρL

(
→

∇αG
αG
−

→

∇αL
αL

)
(T3-7)

Energy equation: ρG
∂αGEG
∂t = −ρG

→

∇·
→
u GαGEG +

→

∇·

(
αGλG

→

∇TG +
=
τG·
→
u G

)
−QGL ± Sh,G (T3-8)

ρL
∂αLEL
∂t = −ρL

→

∇·
→
u LαLEL +

→

∇·

(
αLλL

→

∇TL +
=
τL·
→
u L

)
+ QGL ± Sh,L (T3-9)

The mass, momentum, and heat transfers between the two phases play a key role in multiphase
CFD simulations. The interfacial transfer terms require correct assessment using analytical models and
empirical correlations.

2.3. Gas-Solid Eulerian CFD Model

The gas-solid CFD model is often expressed by Eulerian CFD with the kinetic theory of granular
flow (KTGF) [55,56]. The KTGF-CFD model in Table 4 is the most practical choice for industrial-scale
simulation of particle-fluid systems [17]. Equations (T4-1)–(T4-12) are the continuity and momentum
conservation equations for the gas and solid phases. Equations (T4-17)–(T4-18) are the energy equations
for each phase [57]. Here, α is the solid volume fraction, u and v are the velocities of the gas and
solid phases, respectively, ρG and ρS are the densities of the gas and solid, respectively, p is the
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pressure shared by all phases, τ is the stress tensor associated with the two phases, and
→

FD,GS is the
momentum exchange between the phases, which is defined as the interaction force per unit volume of
the bed [55,58].

Table 4. Kinetic theory of granular flow (KTGF)-CFD model for gas-solid phases [55,58].

Continuity equation (gas phase): ∂(1−α)∂t +
→

∇·

(
(1− α)

→
u
)
= 0

(solid phase): ∂α∂t +
→

∇·

(
α
→
v
)
= 0 (T4-1)

Momentum equation (gas phase): ρG
∂
(
(1−α)

→

u
)

∂t = −ρG
→

∇·

(
(1− α)

→
u
→
u
)
− (1− α)

→

∇p +
→

∇·

( =
τG

)
+ ρG(1− α)

→
g −

→

F D,GS

(solid phase): ρS
∂
(
α
→

v
)

∂t = −ρS
→

∇·

(
α
→
v
→
v
)
− α
→

∇p−
→

∇pS +
→

∇·

(=
τS

)
+ ρSα

→
g +

→

F D,GS
(T4-2)

where the solid-gas drag [59] is
→

F D,GS = KGS
(
→
u −

→
v
)
, KGS = 3

4 CD
ρG(1−α)α

∣∣∣∣→u−→v ∣∣∣∣
d (1− α)−2.65

when 1− α > 0.8 (dilute), with CD = 24
(1−α)Res

[
1 + 0.15((1− α)Res)

0.687
]
, (T4-3)

KGS = 150 α2µG

(1−α)d2 + 1.75
αρG

∣∣∣∣→u−→v ∣∣∣∣
d when 1− α ≤ 0.8 (dense),

the gas-phase stress tensor is
=
τG = (1− α)µG

[
→

∇
→
u +

→

∇
→
u

T
−

2
3

(
→

∇·
→
u
)=

I
]
−

2
3ρGk

=
I , (T4-4)

the solid-phase stress tensor is
=
τS =

[
−pS + αλS

→

∇·
→
v
]=

I − αµS

[
→

∇
→
v +

→

∇
→
v

T
−

2
3

(
→

∇·
→
v
)=

I
]
−

2
3ρGk

=
I , (T4-5)

the solid-phase pressure is pS = αρS[1 + 2(1 + e)αg0]Θ, (T4-6)

the solid-phase bulk viscosity [60] is λS = 4
3αρSdg0(1 + e)

(
Θ
π

) 1
2 , (T4-7)

the solid shear viscosity is µS = µS,col + µS,kin + µS, f ri, (T4-8)

the collision viscosity of solids [61] is µS,col =
4
5αρSdg0(1 + e)

(
Θ
π

) 1
2 , (T4-9)

the kinetic viscosity of solids [59] is µS,kin =
10ρSd

√
Θπ

96α(1+e)g0

[
1 + 4

5 g0α(1 + e)
]2
α, (T4-10)

the frictional viscosity of solids [62] is µS, f ri =
pssinφ
2
√

I2D
; with φ = 300, (T4-11)

and the radial distribution function [63] is g0 =

[
1−

(
α
αm

) 1
3

]−1

with the maximum packing (αm) (T4-12)

Granular temperature (Θ) equation neglecting the convection and diffusion terms: 0 =
(
−pS

=
I +

=
τS

)
:
→

∇
→
v − γS + φGS (T4-13)

where the energy generation by the solid stress tensor (
=
τS) with a double inner product is

(
−pS

=
I +

=
τS

)
:
→

∇
→
v , (T4-14)

the energy collisional dissipation rate of the solid phase [60] is γS =
12(1−e2)g0

d
√
π

ρSα
2Θ

3
2 , (T4-15)

and the fluctuation kinetic energy transfer from the solid to gas phase [59] is φGS = −3KGSΘ (T4-16)

Energy equation: ρG
∂(1−α)EG

∂t = −ρG
→

∇·
→
u (1− α)EG +

→

∇·

(
(1− α)λG

→

∇TG +
=
τG·
→
u
)
−QGS ± Sh,G (T4-17)

ρS
∂αES
∂t = −ρS

→

∇·
→
vαES +

→

∇·

(
αλS

→

∇TS +
=
τS·
→
v
)
+ QGS ± Sh,S (T4-18)

Assuming incompressible flow (constant ρ), no chemical reaction, and no phase change, the first
term of Equation (T4-1) accounts for the rate of total mass accumulation per unit volume, and the
second term is the net rate of convection mass flux.

=
τG and

=
τS are expressed in Equations (T4-4) and

(T4-5), respectively, for a Newtonian fluid with constant viscosity (µ).
The Gidaspow drag model (KGS) [59] in Equation (T4-3), which is a combination of the Ergun and

Wen–Yu drag models, is applicable to both dilute and dense solids flows [21]. The drag model was
validated by a number of studies for bubbling fluidized bed with acceptable accuracy [55]. The granular
temperature (Θ) in Equation (T4-6) for the solid pressure (pS) is defined with the energy generation by
the solid stress in Equation (T4-14), the dissipation rate (γS) of collisional energy in Equation (T4-15),
and the random fluctuation kinetic energy transfer (φGS) from the solid to gas phases in Equation
(T4-16) [55,56].

The mesoscale structure of clustered particles has a significant effect on the flow and transport
behavior of particle-fluid systems [17]. The drag coefficient (CD in Equation (T4-3)) measured in
gas-solid fluidization may be orders of magnitude lower than that of uniform suspension because
of the presence of bubbles and particle clusters [17]. To elucidate the complex behavior of clustered
particles, energy minimization multiscale (EMMS) methods have been proposed, where the energy
consumption for the suspension and transport of particles is minimized under stability constraints [64].

Using the operating conditions (superficial gas velocity and solid circulation flux) and the physical
properties of the gas (density and viscosity) and the solid (diameter and density) as input parameters,
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the drag coefficient of the EMMS method is calculated in sequential or concurrent strategy coupling
with the KTGF-CFD model in the macroscopic scale [17]. The table-looking method as a sequential
coupling strategy can be used for the EMMS method in a computationally efficient way (refer to
Section 3.5 for details) [58].

2.4. Three-Phase Eulerian CFD Model

In the three-phase Eulerian CFD model, three phases are treated as fully interpenetrating
continuous phases. The solid pressure (pS) and viscosity (µS) are calculated by the KTGF model. All the
phases have the same conservation equations, where additional closures (or constitutive equations)

are required for interface interactions such as gas-liquid (
→

FD,GL), solid-liquid (
→

FD,LS), and gas-solid

(
→

FD,GS) drags [23], and gas-liquid (QGL), solid-liquid (QLS), and gas-solid (QGS) heat exchanges [57].

The drag forces (
→

FD) caused by the slip velocity between phases are predominant in the interphase
momentum exchange forces, therefore Table 5 shows only the drag forces in the momentum equation.

Table 5. EM-KTGF-CFD model for gas-liquid-solid phases [65].

Continuity equation (gas phase): ρG
∂αG
∂t = −ρG

→

∇·

(
αG
→
u G

)
(liquid phase): ρL

∂αL
∂t = −ρL

→

∇·

(
αL
→
u L

)
(T5-1)

(solid phase): ρS
∂αS
∂t = −ρS

→

∇·

(
αS
→
uS

)
Momentum equation (gas phase): ρG

∂
(
αG
→

uG

)
∂t = −ρG

→

∇·

(
αG
→
u G
→
u G

)
− αG

→

∇p +
→

∇·
=
τG + ρGαG

→
g −

→

F D,GL −
→

F D,GS

(liquid phase): ρL
∂
(
αL
→

uL

)
∂t = −ρL

→

∇·

(
αL
→
u L
→
u L

)
− αL

→

∇P +
→

∇·
=
τL + ρLαL

→
g +

→

F D,GL −
→

F D,LS (T5-2)

(solid phase): ρS
∂
(
αS
→

uS

)
∂t = −ρS

→

∇·

(
αS
→
u S
→
u S

)
− αS

→

∇p−
→

∇pS +
→

∇·
=
τS + ρSαS

→
g +

→

F D,LS +
→

F D,GS

Interface interactions (G-L):
→

F D,GL = KGL
(
→
u G −

→
u L

)
, KGL = 3

4
CD,GL

db
ρLαGαL

∣∣∣∣→u G −
→
u L

∣∣∣∣
(S-L):

→

F D,SL = KSL
(
→
u S −

→
u L

)
, KSL = 3

4 CD,SL
ρLαSαL

∣∣∣∣→uS−
→

uL

∣∣∣∣
ds

αL
−2.65 f or αL > 0.8,

(T5-3)

and KSL = 150αS(1−αL)µL

αLd2
s

+ 1.75
αSρL

∣∣∣∣→uS−
→

uL

∣∣∣∣
ds

f or αL ≤ 0.8

(G-S):
→

F D,GS = KGS
(
→
u G −

→
u S

)
, KGS = 3

4
CD,GS

ds
ρgαGαS

∣∣∣∣→u G −
→
u L

∣∣∣∣
Energy equation (gas phase): ρG

∂αGEG
∂t = −ρG

→

∇·
→
u GαGEG +

→

∇·

(
αGλG

→

∇TG +
=
τG·
→
u G

)
−QGL −QGS ± Sh,G

(liquid phase): ρL
∂αLEL
∂t = −ρL

→

∇·
→
u LαLEL +

→

∇·

(
αLλL

→

∇TL +
=
τL·
→
u L

)
+ QGL −QLS ± Sh,L (T5-4)

(solid phase): ρS
∂αSES
∂t = −ρS

→

∇·
→
u SαSEs +

→

∇·

(
αSλs

→

∇Ts +
=
τs·
→
u S

)
+ QLS + QGS ± Sh,S

Pan et al. (2016) [23] summarized the drag coefficient (CD,GL) between the gas and liquid phases
such as in the Grace, Tomyama, Schiller–Naumann, and Ishii–Zuber models. The gas-liquid drag force
influences the gas holdup. Hamidipour et al. (2012) [65] used the Gidaspow drag model [59] to describe

the solid-liquid interaction force (
→

FD,SL), which has been applied to gas-solid systems. The gas-solid

drag force (
→

FD,GS) similar to that between the gas and liquid phases is used in Equation (T5-3).
In addition to the drag models, the granular temperature (Θ) from the KTGF is calculated
(see Equation (T4-13)–Equation (T4-16)) for the solid pressure (pS) and viscosity (µS) [65].

2.5. Turbulence Equations

The dynamics of fluid flow are described by the NS momentum equations [31]. As the Reynolds
number increases, the flow reaches a state of motion characterized by strong and unsteady random
fluctuations of the velocity and pressure fields, which is referred to as the turbulent regime. Turbulent
flow can be modeled by the direct numerical simulation (DNS) of the NS equations, which is
computationally prohibitive but accurate, RANS based on empirical models, and large eddy simulation
(LES) as a compromise between DNS and RANS [31].
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The instantaneous velocity and pressure are decomposed into the sum of the mean and fluctuation
components in the RANS-based equation. Substituting the decomposition into the NS equations and
taking the ensemble-average leads to the RANS equations. RANS modeling includes uncertainties
due to information loss in the Reynolds-averaging process [31]. Here, the Reynolds stress tensor (

=
τ)

including the turbulent viscosity (µt) is solved with constitutive equations describing the turbulent
kinetic energy (k) and its dissipation rate (ε). The RANS equation for the turbulent momentum equation
is expressed as

ρ
→

∇·

(
→
u
→
u
)
= −

→

∇P +
→

∇·
=
τ + ρ

→
g +

→

F (1)

where the Reynolds stress tensor (
=
τ) is defined as

⇀
⇀
τ = (µ+ µt)

⇀∇⇀u +
⇀
∇
⇀
u

T
−

2
3

(⇀
∇ ·

⇀
u
)⇀⇀

I

− 2
3
ρk
⇀
⇀
I (2)

with µt = ρCµ k2

ε and
⇀
⇀
I = δi j, δi j = 1 f or i = j and δi j = 0 f or i , j.

The standard k-ε turbulence model [50,66,67] is expressed for incompressible fluid as follows:

ρ
∂k
∂t

+ ρ
→

∇·

(
k
→
u
)
=
→

∇·

[(
µ+

µt

σk

)
→

∇k
]
+ Gk + Gb − ρε (3)

ρ
∂ε
∂t

+ ρ
→

∇·

(
ε
→
u
)
=
→

∇·

[(
µ+

µt

σε

)
→

∇ε
]
+ Cε1

ε
k

Gk −Cε2ρ
ε2

k
(4)

where Gk and Gb represent the generation of the turbulent kinetic energy (k) caused by the mean
velocity gradients and the buoyancy, respectively.

The k-ε model involves coefficients Cµ, Cε1, Cε2, σk, and σε. The nature of these coefficients leads
to ambiguity regarding their values. However, these coefficients have been calibrated empirically to
reproduce the results of a few flows [31]. Xiao and Cinnella (2019) presented the uncertainty of these
parameters [31]. The RANS-based turbulence model [26] includes the standard k-ε [67], modified
k-ε, realizable k-ε for complex flows [22,24,55,68], renormalization group (RNG) k-ε, and shear stress
transport (SST) k-ω equations [53]. The RNG k–ε model is more accurate and reliable for a wider range
of flows than the standard k–ε model, which is mostly used in turbulence modeling of duct channel
flows with heat transfer [40]. The realizable k-ε turbulence model satisfies the mathematical constraints
on the Reynolds stresses, which is consistent with the physics of turbulence flow. The realizable k-ε
model has exhibited substantial improvements over the other k-ε type turbulence models when the
flow features include strong streamline curvature, vortex, and rotation [68]. The SST k-ω model is
widely used for laminar and turbulent mixed flows [53,69].

For turbulent two-phase flows in microscale CFD, LES may offer a good compromise between
RANS-based closures and DNS due to suitable subgrid closures [32], as mentioned earlier. However,
wide application of LES is still limited because of the large mesh requirement and high computational
cost [39]. The DNS and LES may be impractical as a general-purpose design tool for most industrial
flow conditions [39].

3. Applications of Eulerian CFD

CFD makes it possible to understand complex hydrodynamic behaviors with heat and mass
transfer and chemical reactions. CFD has numerous applications in the field of gas distributors [24],
gas storage tanks [26], coal and biomass gasifiers [55,70], fuel cells [38,71], absorbers with random
packing [72–74] and structured-packing [54,75], agitated bioreactors [39,76], offshore oil separators [77],
gas-liquid bubble columns [32,53,78–80], and gas-solid fluidized beds [23,43,55,56,58,65].
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3.1. Single-Phase CFD Simulations

Gas-phase CFD with various turbulence equations has been used to find the optimal geometries
of equipment such as a vortex tube producing a temperature separation effect [81], a syngas conversion
reactor [42], a duct with rib-roughened walls [40], an industrial-scale gas distributor with injectors [24],
and a sleeve-type steam methane reformer for H2 production [22]. For oxy-fuel combustion in power
plants, a gas-phase Eulerian CFD model was incorporated with combustion reactions (pyrolysis,
gasification, char reactions, and gas-phase reactions), turbulence, convective and radiative heat
transfers, and convective mass transfer [41].

Using a liquid-phase 3D CFD model with heat transfer, the effect of various hollow fiber geometries
on hydrodynamics through the flow channels was investigated to enhance the heat transfer coefficient
(HTC) between the feed and the permeate [82]. Liquid-phase CFD under a laminar flow condition was
used to evaluate the HTC of nanoparticle-added ionic liquids that are non-flammable and non-volatile
at ambient conditions and recyclable [83]. The effect of the Reynolds number and nanoparticle
concentration on the HTC was investigated using the Eulerian CFD model with the thermos-physical
properties of ionic nanofluids such as thermal conductivity, heat capacity, density, and viscosity [83].

3.1.1. Gas Distributors

CFD is considered a pivotal technology in the design and performance evaluation of chemical
processes [84]. Appropriate performance indexes should be obtained from CFD results for both the
process design and optimization. Pham et al. (2018) [24] compared several gas distributors used in
an industrial-scale CO2 amine absorber using a gas-phase steady-state 3D CFD with the realizable
k-ε turbulence equation. Three performance indexes, including the pressure drop, dead-area ratio,
and coefficient of gas distribution, were used to describe the quality of gas distribution [24]. Figure 2
shows a Schoepentoeter gas distributor as a gas injection device, the velocity vector around the
Schoepentoeter, and the radial velocity contour above the chimney tray. The velocity contour obtained
from the CFD simulation (Figure 2c) is able to quantify the uniformity of the gas distribution.
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3.1.2. Gas-Filling Storage Processes

The maximum temperature is regulated throughout H2 refueling to preserve the integrity of the
tanks [26]. CFD simulations of H2 tanks with experimental validation were performed in the range
of 50 ≤ P ≤ 800 bar [26]. CFD made it possible to investigate the effect of feed temperature, density,
pressure, and flow speed on the gas and tank wall temperatures in space and time [26]. A gas-phase
CFD model with internal and external heat transfers, which was validated with experimental data,
was used to identify the temperature profile of the H2 tank.

3.1.3. Fixed Bed with Random Packing

Ahmadi and Sefidvash (2018) [72] presented a gas-phase steady-state 3D CFD with the standard
k-ε turbulence equation to predict the pressure drop in a fixed bed with random packing. A supercritical
steam flow with high Reynolds numbers was simulated in a column randomly packed with 800 fixed
particles of 3 cm in diameter. After validation of the CFD model against experimental data, the CFD
model was used to develop a CFD-based empirical equation for the pressure drop at high Reynolds
numbers in random packing fixed beds, which is useful in industry [72]. Unlike porous media CFD
simulations for fixed beds [75,85], this CFD study considered the random structure of 800 spherical
particles using 15 million computational cells.

Wang et al. (2020) [73] reported a gas-phase steady-state 3D CFD with the realizable k-ε turbulence
equation to predict the pressure drop in a rotating fixed bed with random packing. N2 gas flow
was simulated in a rotating column randomly packed by 470 fixed particles of 5 mm in diameter.
Approximately 10 million computational cells were used to build a fixed bed randomly packed with
the spherical particles. The CFD model was first validated with experimental data. Subsequently,
the effects of rotating speed and gas velocity on the pressure drop were examined using the validated
CFD model. A semi-empirical correlation based on the CFD simulation was proposed to predict the
dry pressure drop [73], which is of practical use in industry.

3.2. Gas-Liquid Phase CFD Simulations

CFD simulations in the gas-liquid phase have been applied to chemical and biological processes
such as fuel cells [38,86], microchannel reactors [87], WWTPs [39], photobioreactors [76], absorbers
with structured-packing [54,75] and random packing [74], and bubble columns [53,78–80]. VOF-CFD
was used to simulate relatively small physical domains, whereas EM-CFD was used to investigate the
hydrodynamic behaviors of an entire process.

Using VOF-CFD models, the effects of operating conditions (temperature and gas flow rate),
material properties, and gas channel geometries on the hydrodynamics of PEM fuel cells (cathode side)
were reported by Ferreira et al. (2015) [38]. Multiple length scales from a few micrometers to meters
were also present in the PEM fuel cell. Coupling of the VOF model with electrochemical reactions and
heat transfer is needed to better understand the hydrodynamics of PEM fuel cells [38]. Furthermore,
the coupling of gas-liquid flows in both anode/cathode channels and porous electrodes is vital in
current CFD models, which leads to multiscale simulations [86]. Zhang and Jiao (2018) [86] presented
the necessity of a 3D CFD simulation at cell and stack levels to accurately simulate water and thermal
management in PEM fuel cells.

Li et al. (2018) [87] used a 3D VOF-CFD model with CSF to investigate the pressure drop,
liquid holdup, and gas-liquid interfacial area in a microporous tube-in-tube microchannel reactor.
The pressure drop obtained from the CFD was validated against that of an experiment. The effects of
the microchannel width, micropore diameter, and liquid flow rate on the pressure drop and interfacial
area were examined using the CFD model [87]. The CFD study addressed the potential for optimization
of operating conditions and design of microchannel reactors.

CFD tools have been used as a design tool in the development of new aeration devices and
optimization of their geometry in WWTPs [39]. The gas-liquid EM-CFD model was applied to activated
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sludge tanks of WWTP to investigate the gas holdup, flow velocity, and O2 concentration [39]. The fluid
flow in such bioreactors depended on the tank geometry, physical properties (density, viscosity,
and solubility), and operating conditions (inlet flow rate, inlet concentration, and temperature) [39].
A CFD model combining hydrodynamics, mass transfer, and biochemical reaction kinetics will be one
of the major challenges in WWTP [39]. Collision, coalescence, breakage, and deformation of bubbles
promote diversity in the shapes and sizes of bubbles in aeration tanks with a bubbly flow regime.
The population balance equation (PBE) for bubbles may be helpful in accounting for the bubble-size
distribution (BSD) and its dynamics [39].

Soman and Shastri (2015) [76] presented a gas-liquid 3D Eulerian CFD with radiation in a
large-scale photobioreactor for microalgae cultivation. The dimensions of a new photobioreactor
(width, height, and clearances) were optimized using the CFD model validated against experimental
data. The bubble size was set to 5 mm in the CFD. Assuming that the microalgae was distributed
uniformly and was well diluted, the solid phase was ignored [76].

3.2.1. Gas-Liquid Flow in Structured Packing

Kim et al. (2017) [75] investigated the effect of the center of gravity (CoG) position on the
CO2 removal efficiency for an amine absorber with structured packing subject to pitching motion.
A gas-liquid transient Eulerian 3D CFD model was used. The sliding mesh method observing at the
outside of the amine absorber was implemented for the pitching motion [75]. The structured packing
was assumed as a porous medium, ignoring complex flow channels of the packing. However, porous
resistance and liquid dispersion forces were added into the NS momentum equation in the porous
medium zone to mimic key features of the packing [54].

Figure 3a shows the layout of the three CoGs used for comparison in the amine absorber (0.125 m
in diameter and 4.325 m in height). The equipment motion is the least severe when the equipment is
located as close as possible to the CoG. When the column was inclined to the left, the liquid holdup of
CoG3 in the middle of the absorber (h = 2.1 m) was strongly skewed to the left wall side (see Figure 3b).
The CFD study successfully identified the effect of the installed location on the hydrodynamics of the
process under ship motion. The hydrodynamics of an air-water-oil separator under three angular ship
motions (pitch, roll, and yaw) were also presented recently [77].
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Figure 3. Amine absorber with structured-packing under off-shore operation. (a) Layout of amine
absorber with three centers of gravity (CoG); and (b) liquid holdup contour under pitching motion at
h = 2.1 m for three CoGs (modified from Kim et al. (2017) [75]).

3.2.2. Gas-Liquid Flow in Random Packing

Kang et al. (2019) [74] presented an unsteady-state 3D VOF-CFD that included a surface tension
force (i.e., CSF) to investigate gas-liquid flow behaviors in random packing with 80 Rasching rings (inner
diameter 4 mm and outer diameter 6 mm). The VOF-CFD results were compared with experimental data
such as the gas-liquid interfacial area, liquid holdup, and pressure drop. The CFD study represented
well the hydrodynamics of the small-scale packing column [74]. However, a VOF-CFD approach that
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considers the detailed geometry of packing particles may be prohibitive for a large-scale industrial
column, as mentioned earlier. The microscale VOF-CFD simulation may be useful for developing
correlations that are required in a macroscale CFD simulation for industrial packing columns [74].

3.2.3. Gas-Liquid Bubble Columns

Bubble columns have been widely used in chemical, pharmaceutical, petrochemical, biochemical,
and metallurgical processes for gas-liquid and gas-liquid-solid contact or chemical reactions due to
good heat and mass transfer [25,53,78,88]. CFD has become an important approach in understanding
the hydrodynamics of multiphase flow, bubble-size distribution, and gas-liquid interfacial area,
thus facilitating the design, scaling-up, or optimization of bubble columns [25]. Many researchers
developed CFD models with various constitutive equations or sub-models for bubble columns.

Klein et al. (2019) presented a VOF-CFD simulation with an LES turbulence equation for liquid jet
atomization and a single bubble rising in turbulent flow at the microscale [32]. For industrial-scale
bubble column fermenters, Fletcher et al. (2017) [78] presented a transient 3D EM-CFD without the
population balance equation (PBE) to describe bubble breakage and coalescence. The drag model was
modified considering bubble swarms, and the mass transfer of O2 from the gas to liquid phase was
considered via the linear driving force model. The CFD model was validated against experiments
(radial gas holdup and radial liquid velocity). In the CFD study, the use of a single bubble size was
a gross simplification. The impact of bubble swarms and wakes on the drag force must be better
understood. Bubble-induced turbulence [79] may improve the level of agreement between modeling
and experimental results [78].

A wide range of bubble sizes and shapes exist in bubbly flows, which leads to different transport
characteristics. Sharma et al. (2019) [79] proposed turbulence-induced bubble collision diffusion for
two-group bubble simulations. The bubble collision force for the two groups of bubbles was added to
the gas-phase momentum equation of each group [79]. The gas-liquid Eulerian CFD model without
PBE was applied to a turbulent flow regime. Bubble interaction mechanisms such as bubble breakup
and coalescence would be useful to better predict hydrodynamics in bubble columns.

Tran et al. (2019) [53] presented a gas-liquid Eulerian CFD model coupled with a PBE for an
air-water homogeneous bubble column under high pressures. The drag coefficient and breakage kernel
were modified to consider the impact of bubble swarms and pressure on the hydrodynamics of the
bubble column. The gas holdup and mean bubble size obtained from the modified CFD model were
compared with experimental data. Figure 4 displays the gas holdup contours in the air-water bubble
column at 1–35 bar. The gas holdup increases as the pressure increases. It is clearly shown at the
bottom of Figure 4 that the radial gas holdup is higher at higher pressure.
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Yan et al. (2019) [80] proposed three drag models used for a gas-liquid transient Eulerian CFD
model without PBE in an air-water bubble column under elevated pressure. The drag models covering
the flow regime from homogeneous to turbulent included a pressure correction term to represent
the effect of pressure on the gas holdup [80]. Gas-organic liquid bubble columns at high pressures
and temperatures are common in industrial applications [89], therefore attention has been paid to
the CFD simulation of those bubble columns. However, prior to CFD simulations for high-pressure
and high-temperature bubble columns, reliable drag, breakage, and coalescence models have to be
developed that consider microscopic bubble behaviors [90].

Through the stability condition at a mesoscale flow structure, Yang and Xiao (2017) [25] presented
an approach based on the EMMS concept to calculate correction factors of the drag coefficient (CD) and
the coalescence rate. A CFD-PBE model coupled with the EMMS concept was solved for air-water
bubble columns at various gas velocities and compared to experimental data such as the axial bubble
size and bubble size distribution. The CFD-PBE model considering the mesoscale bubble structure
showed improved prediction of the experimental data over the original CFD-PBE [25].

3.3. Gas-Solid Phase CFD Simulations

Fluidized-bed combustors (FBCs) such as bubbling and circulating FBCs have been used for
power production from coal, biomass, and organic wastes owing to excellent heat and mass transfer,
low pollutant emission, and high combustion efficiency [91,92]. Fluidized-bed chemical looping
combustion (FB-CLC) has shown promise as a solution for high-efficiency low-cost carbon capture
from fossil-fueled power plants [93]. 2D and 3D Eulerian CFD simulations with chemical reactions of
the FB-CLC were performed to understand hydrodynamics coupled with chemical reactions [93].

Fluidized beds can be formulated using the two-fluid CFD model where the solid phase is
considered to be a continuum and fully interpenetrating with the gas phase. A Eulerian–Eulerian CFD
framework involving a granular solid and a gas phase is often used for computational investigations
of fluidized beds [91]. The Eulerian CFD model includes the governing equations (the continuity
equation, NS momentum equations, and energy equation) and the constitutive equations for the
solid-phase pressure and viscosity provided by the KTGF [93], as listed in Table 4.

Zhou and Wang (2015) investigated mixing and segregation in circulating fluidized-bed (CFB)
risers using the KTGF-CFD model with the EMMS drag model. The EMMS approach showed
improved hydrodynamics over homogeneous drag forces compared to the experimental data [58].
Fotovat et al. (2017) [43] presented Eulerian and Lagrangian CFD models to investigate the electrostatic
effects on the hydrodynamics of fluidized beds. The CFD models assumed constant particle charges
without allowing for the dynamic nature of tribo-electrification. Thus, a multiscale approach where
charge generation and dissipation mechanisms at the particle scale are coupled with the distribution of
charged particles at the mesoscale was suggested for the future work to predict the effect of electrostatic
charges on the overall reactor performance [43].

The computational particle fluid dynamics (CPFD) model as a kind of Eulerian–Lagrangian
method has been applied to gas-solid fluidized beds [92]. The solid phase is modeled by the Liouville
equation for a particle distribution function (f) in CPFD [94,95] instead of the KTGF equation in Eulerian
CFD. The solid properties are calculated from the f of representative computational particles, which can
increase the computational efficiency for dense solid phases [92]. Kim et al. (2020) [96] presented
a CPFD coupled with the PBE, which was applied to a multiphase and multiscale crystallization.
Wu et al. (2020) [92] developed a cluster-based drag model to consider the multiscale characteristics of
particles in a CPFD simulation.

3.4. Gas-Liquid-Solid Phase CFD Simulations

Yang et al. (2001) [97] investigated numerically and experimentally the bubble formation in a
gas-liquid-solid fluidized bed at elevated pressures. The 2D VOF-CFD successfully predicted the
bubble size with respect to the pressure and solid fraction using the liquid density, viscosity, and surface
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tension adjusted with the pressure. The VOF-CFD was performed in a small area (8 cm width and
5 cm height) with two orifices at the bottom [97].

Hamidipour et al. (2012) [65] presented an unsteady-state 3D EM-KTGF-CFD simulation of
gas-liquid-solid fluidized-beds. The CFD results obtained from various turbulence equations were
compared with the experimental data such as the axial solid velocity and gas holdup. This study
indicated that the constitutive equations and numerical schemes involved in the CFD model should be
carefully selected to accurately capture the flow patterns.

Pan et al. (2016) reviewed CFD simulations of gas-liquid-solid flow in fluidized beds [23].
A three-phase fluidized bed is intrinsically multiscale in time and space, including the macroscale at the
reactor level, the mesoscale with particle clusters and bubble swarms, and the microscale with particle
and bubble size [23]. Hydrodynamic properties such as the bubble size, bubble-rising velocity, liquid
velocity, and gas and solid holdups were examined according to operating conditions in three-phase
fluidized beds. The authors suggested additional work required for three-phase fixed-bed CFDs:
(i) new drag models for interphase momentum exchange, (ii) CFD modeling including chemical
reactions and heat and mass transfers in industrial-scale reactors, and (iii) multiscale modeling on the
balance between computation cost and accuracy [23].

3.5. Multiscale CFD Simulations

The critical task and major difficulty in multiscale modeling is how to exchange information at
the interface of neighboring sub-domains [98]. The applications of the multiscale CFD simulation are
introduced in terms of concurrent and sequential coupling strategies.

3.5.1. Concurrent Coupling Strategy

Chen et al. (2013) [98] presented a multiscale modeling framework combining a gas-phase Eulerian
CFD and a D2Q5/D2Q9 LBM to predict electrochemical transport phenomena in the cathode of PEM
fuel cells. At each time step, the density, velocity, and concentrations were interchanged between the
CFD and LBM domains, including the gas channel, porous gas diffusion layer, and catalytic layer.
The results obtained from LBM were used as the boundary conditions of the CFD domain. At each
time step, the CFD and LBM simulations were repeated until the two results converged [98].

Crose et al. (2017) [13] developed a multiscale CFD framework in the plasma-enhanced chemical
vapor deposition (PECVD) of thin-film solar cells. A macroscopic gas-phase transient 2D CFD model
with plasma chemistry and transport phenomena was solved to calculate the pressure, velocity,
temperature, and species concentration. The CFD model was concurrently coupled with a kinetic
Monte Carlo scheme describing the microscopic thin-film growth. Indeed, decoupled CFD and
surface interaction models were unable to capture the spatially nonuniform deposition of silicon films.
The multiscale CFD was capable of predicting the codependent behavior of the macroscopic gas phase
and the microscopic thin-film growth rate. Using three user-defined functions (UDFs), including
gas-phase reaction rates, an electron density profile in the gas phase, and a hybrid kinetic Monte
Carlo (KMC) algorithm on the wafer surface, the macro- and microscale models were coupled at each
time step [13]. The multiscale computing was parallelized within a message-passing interface (MPI)
architecture to reduce the computational time.

Pozzetti and Peters (2018) [99] proposed a multiscale DEM-CFD method for the simulation of
three-phase flows using a dual-grid method for the bulk and fluid fine scales, which is different from
the classical CFD-DEM approach. The classical CFD-DEM approach based on the volume averaging
technique aims to couple CFD with a DEM solution at a single scale using cell values or locally
interpolated values to evaluate the fluid-particle interactions. The concurrent coupling between CFD
and DEM can lead to high computational cost. The dual-grid multiscale DEM-CFD method aimed to
capture the most significant phenomena of the two different scales while reducing the computational
burden as much as possible. However, the new method required a complex interpolation between the
two scales [99].
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A heterogeneity concept for mesoscale particle-cluster behaviors was introduced into Eulerian CFD
computational cells to modify the interphase drag coefficient in the fluidized bed. Qi et al. (2007) [100]
presented EMMS-based multiscale drag models, where flow variables such as the voidage (ε) and the
gas and solid velocities (ug and us, respectively) obtained from CFD were used as input values to the
EMMS model. The drag force (FD) considering the heterogeneity of the mesoscale was simultaneously
updated for each computational cell and flow time [100]. Li et al. (2018) [87] proposed a cluster
structure-dependent (CSD) drag model by introducing convective and temporal accelerations of both
gas and particles in the dilute and dense phases. Although multiscale drag models showed better
accuracy than common single-scale drag models, they required greater computational time.

The concurrent coupling strategy of the gas-solid Eulerian CFD with the multiscale drag models
is shown in Figure 5. In each computational cell, an EMMS or CSD model is solved with the input
variables (ε, ug, and us) from the CFD. The drag force (FD) computed by the EMMS or CSD model is
returned to each cell.
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3.5.2. Sequential Coupling Strategy

Raynal and Royon-Lebeaud (2007) [101] developed a typical sequential multiscale CFD approach
from small to large scales of structured-packing columns for achieving an optimum column design.
A 2D VOF-CFD model was used to calculate the liquid holdup and velocity at a small scale of the
structured-packing. A gas-phase 3D CFD model with a moving wall boundary condition was applied
to an REV of the structured-packing to calculate the relationship between the pressure drop and
the gas superficial velocity. Once the liquid holdup, gas-liquid interaction, and pressure drop were
determined at the small scales, a gas-solid 3D porous CFD simulation was performed for the whole
absorber to examine the influence of internals (e.g., gas and liquid distributors) on the hydrodynamics
of the absorber. As a direct CFD simulation that completely considers the complex geometry of
structured packing requires significant computational time, the three-step multiscale approach is useful
for investigating the hydrodynamics of industrial-scale absorbers.

Qi et al. (2017) [102] proposed a sequential multiscale CFD method to predict the liquid distribution
in Mellapak 350Y structured packing. A microscale VOF-CFD model was solved for six REVs at different
positions of the packing. Using a macroscale unit network model (UNM), the liquid distribution at
the macroscale was evaluated from the distribution coefficient computed by the microscale VOF-CFD
model. The macroscale UNM assisted in the design and optimization of structured packing [102].
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Ngo et al. (2017) [29] presented the multiscale CFD model of an impregnation die for carbon fiber
(CF) prepreg production. A liquid-phase Eulerian CFD was used at the microscale tow domain to
obtain resin permeability (K). A liquid-phase steady-state Eulerian CFD with K was applied to the
porous media tow domain at the macroscale. Figure 6 shows a sequential coupling strategy between the
two Eulerian CFD models. The resin penetration velocity (up) at the two tow scales was interconnected,
therefore several iterations were necessary to obtain a converged K value.ChemEngineering 2020, 4, x FOR PEER REVIEW 17 of 26 
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Figure 6. Sequential coupling strategy of multiscale CFD simulation to predict the permeability
of resin through porous tows for the production of thermoplastic carbon fibers (modified from
Ngo et al. (2017) [29]).

Ngo et al. (2018) [33] proposed another multiscale simulation approach to predict the degree of
impregnation in the CF prepreg production process (see Figure 1). The multiscale simulation included
three scales: a 2D unsteady-state VOF-CFD for an REV of the microscopic tow domain (see Figure 1d),
a liquid-phase Eulerian 3D CFD for the entire impregnation die (see Figure 1b), and a process-scale
simulation combining data from the micro- and macroscale CFDs. Figure 7 shows a sequential coupling
strategy between the three scales.

ChemEngineering 2020, 4, x FOR PEER REVIEW 17 of 26 

 
Figure 6. Sequential coupling strategy of multiscale CFD simulation to predict the permeability of 
resin through porous tows for the production of thermoplastic carbon fibers (modified from Ngo et 
al. (2017) [29]). 

 

Figure 7. Sequential coupling strategy of multiscale CFD simulation to predict the degree of resin 
impregnation for the production of thermoplastic carbon fiber (modified from Ngo et al. (2018) [33]). 

In gas-solid fluidization systems, several multiscale concepts for the Eulerian CFD model have 
been proposed: a filtered drag force (FDF) model using constitutive equations from highly resolved 
subgrid models [103], a mesoscale structure-based drag model, where the flow structure and stability 
conditions were considered to capture the clustering behavior of solid particles using the EMMS 
model [46,73,104,105], and a CSD drag model [87,100]. 

Lu et al. (2019) and Wang (2020) [46,47] reviewed several sequential coupling strategies between 
the EMMS drag and Eulerian CFD models to speed up the multiscale simulation using a lookup table 
[105] or a fitting function [104] of the drag force. Figure 8 shows the sequential coupling strategy of 
the multiscale Eulerian CFD with EMMS in fluidized beds. The flow regime with superficial velocity 
(𝑢) and solid flux (𝐺௦), solid material property with particles density (𝜌) and diameter (𝑑), and a 
broad range of flow conditions with the Reynolds number (𝑅𝑒) and voidage (𝜀) are used as the input 
values of the EMMS model for generating a fitting function of the heterogeneity index (HD) that is 
directly multiplied by the original Wen and Yu drag force [104]. 

Macro-scale steady
Eulerian CFD

Permeability K(i)

Micro-scale steady 
Eulerian CFD

uinlet = up
(i)< 5%

Break

Initialization
i = 1

K(i) = Kinit

Yes

No

i=i+1

)i(
p

)i(
p

)i(
p

u

uu
(%)Error

−
=

+1

100
)i(

towy
)i(

p uu =

( 1) ( )i i
p

LK u
P

+ = μ
Δ

1

2

Micro-scale VOF-CFD at P1 Macro-scale 3D CFD
(Steady-state Eulerian) Process-scale calculaton

Resin pressure range (P1 ~ PM)

Data regression of 
micro-scale CFD

Micro-scale VOF-CFD at P2

…
Micro-scale VOF-CFD at P3

Micro-scale VOF-CFD at PM

1

2 3

4

Micro-scale 2D CFD
(Unsteady-state VOF)

Degree of impregnation Degree of impregnation
Rate of impregnation

Locations (xi)

Pressures (Pi)

Cumulative degree of 
impregnation for 15 tows
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In gas-solid fluidization systems, several multiscale concepts for the Eulerian CFD model have
been proposed: a filtered drag force (FDF) model using constitutive equations from highly resolved
subgrid models [103], a mesoscale structure-based drag model, where the flow structure and stability
conditions were considered to capture the clustering behavior of solid particles using the EMMS
model [46,73,104,105], and a CSD drag model [87,100].

Lu et al. (2019) and Wang (2020) [46,47] reviewed several sequential coupling strategies between
the EMMS drag and Eulerian CFD models to speed up the multiscale simulation using a lookup
table [105] or a fitting function [104] of the drag force. Figure 8 shows the sequential coupling strategy
of the multiscale Eulerian CFD with EMMS in fluidized beds. The flow regime with superficial velocity
(ug) and solid flux (Gs), solid material property with particles density (ρp) and diameter (dp), and a
broad range of flow conditions with the Reynolds number (Re) and voidage (ε) are used as the input
values of the EMMS model for generating a fitting function of the heterogeneity index (HD) that is
directly multiplied by the original Wen and Yu drag force [104].
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4. Discussion of Multiscale CFD Simulations

In recent CFD studies, multiphase, multiphysics, and multiscale simulations with complex
geometries were performed with the increase in computational capacity. Using CFD models validated
with experimental data, efforts to replace the experiments are continuing to reduce the time and cost
required during process development. However, current CFD simulations are still far from meeting
practical demands for process development.

The main challenges limiting the use of CFD simulations are accuracy and computational cost [17].
Despite the successful spread and usage of CFD simulations, there are potential risks of its misuse
because of poor model choice, bad assumptions, and wrong interpretation of the results [39]. Reliable
theories and numerical methods are needed for accurate simulation. Particular emphasis is placed on
the validation of CFD models via experiments and suitable analytic solutions. Extensive validation
with experimental data is still required for closure models under a wide range of flow conditions [51].

Table 6 summarizes the recent progress of multiscale CFD simulations in the concurrent and
sequential coupling frameworks. Macroscale CFD models have been coupled with LBM, KMC, DEM,
EMMS, CSD, and PBE at smaller scales to more accurately calculate physical phenomena at the cost of
computational time. In the sequential coupling approach, model parameters required in the macroscale
CFD were evaluated at smaller scales or vice versa.
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Table 6. Recent progress of multiscale CFD simulation of chemical and biological processes.

Advantage Disadvantage Author Models Application Field

Concurrent coupling High accuracy High computational cost

Chen, 2013 [98] LBM-CFD PEM fuel cell
Crose, 2017 [13] KMC-CFD PECVD wafer

Pozzetti, 2018 [99] DEM-VOF Three-phase flows with particles
Da Rosa, 2018 [34] PBE-CFD Tubular crystallizer

Qi, 2007 [100] EMMS-CFD Fluidized beds
Li, 2018 [87] CSD-CFD Fluidized beds

Sequential coupling Low accuracy Low computational cost

Raynal, 2007 [101] VOF-EM-CFD Absorber with structured packing
Ngo, 2017 [29] Eulerian CFD Impregnation die for carbon fiber
Ngo, 2018 [33] VOF-CFD Impregnation die for carbon fiber
Qi, 2017 [102] VOF-UNM Absorber with structure packing

Wang, 2007 [105] EMMS-CFD Fluidized beds
Lu, 2009 [104] EMMS-CFD Fluidized beds

Many current works on multiscale modeling focuses on concurrent coupling [4]. Several
libraries have been presented to facilitate the concurrent coupling effort for independently developed
solvers. Bernaschi et al. (2009) [106] presented a multi-physics/scale code (MUPHY) based on the
combination of a microscopic MD with a macroscopic LBM, using MPI as the communication interface
for parallelization. Tang et al. (2015) [107] reported a multiscale universal interface (MUI) which
is capable of creating an easily customizable framework for solver-dependent data interpretation.
Neumann et al. (2016) [108] developed a macro-micro-coupling tool (MaMiCo) for the modulation
of molecular-continuum simulations in fluid dynamics. The computational domain was split into a
continuum region and a molecular region. At the interface between the two regions, flow quantities
such as density, velocity, and temperature were exchanged and matched. MaMiCo supports 2D
and 3D simulations, interface definitions for arbitrary MD and CFD codes, MPI-parallel execution,
and time-dependent simulations [109].

In addition to multiscale CFD simulations, the mesh quality in 2D or 3D geometries is a prerequisite
for achieving accurate CFD simulations. An open-source package, OpenFOAM, based on FVM, has been
widely used in CFD because one can customize solvers and easily extend the numerical libraries [110].
NASA defined digital twins (DT) as an integrated multiphysics, multiscale, probabilistic simulation of
a system that uses the best available physical models and sensor updates to mirror the life of its flying
twin [111]. Simulation tools such as CFD are a key aspect related to DT [112]. This section presents the
current research on mesh independency, OpenFOAM, and DT.

4.1. Mesh Independency

CFD models are solved numerically on meshes discretized in a 2D or 3D computational domain.
The quality of the mesh plays an important role in the accuracy and stability of the numerical
computation [22,113]. The discretization error vanishes only if the grid spacing tends toward zero [114].
A proper number of meshes should be determined as a compromise between computation efficiency
and accuracy [68]. Thus, a mesh independence test should be performed in the verification step of the
CFD calculation [115].

In a simple mesh independence test, three mesh systems—coarse, medium, and fine—were
used [53,54,68,75]. The mesh number of the finer mesh system was double or triple that of the coarser
mesh system. To ensure good mesh quality, the minimum orthogonal index was more than 0.01, and the
average value of the orthogonal index was significantly higher than 0.01. The maximum skewness index
was maintained below 0.95. In addition, the maximum aspect ratio was less than 100, which is much less
for flow exhibiting strong gradients [22]. Hydrodynamic values such pressure, velocity, phase fraction,
and temperature were compared with respect to the three mesh systems. The medium mesh system
was selected, considering the accuracy of the CFD solution and the computation cost [22,54,68,116].

Based on the Richardson extrapolation theory, Roache (1994) [114] proposed a grid convergence
index (GCI) to evaluate the numerical uncertainties of the CFD model. The GCI between two grid
systems was evaluated. When the ratio of the two GCIs was close to unity, a proper mesh system
was selected [115].
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For gas-solid fluidized beds, Cloete et al. (2016) [117] investigated the grid independence
behavior via the particle relaxation time for several common drag models. The practical rule for the
hydrodynamic grid size (∆hydro) expressed by a function of slip velocity (uslip) was found as [117]

∆hydro ≈ 0.0064uslip (5)

The required grid size for a reactive fluidized-bed (∆react) was also proposed [117].

∆react ≈ 0.0064uslip


(
√

27.22+0.0408Ar−27.2)µg

dpρs

0.012kemul

 (6)

where the µg, dp, ρs, ρg, kemul, and Ar =
gd3

pρg(ρs−ρg)
µ2

g
are the gas viscosity, particle diameter,

solid-phase density, gas-phase density, bubble-to-emulsion mass transfer coefficient, and Archimedes
number, respectively.

4.2. Open Source Code

In an open-source CFD such as OpenFOAM (open source field operation and manipulation),
the user can access the source code and customize it to suit the user’s needs [71,118].
Bhusare et al. (2017) [88] investigated the effect of internals on hydrodynamics in a bubble column using
a gas-liquid Eulerian CFD model in OpenFOAM, which was compared with experiments and ANSYS
Fluent (as a commercial CFD code). Kone et al. (2018) developed an OpenFOAM code to calculate
a single-phase 3D CFD model in a PEM fuel cell [71]. Da Rosa and Braatz (2018) [34] presented a
multiscale CFD model combined with a micromixing, energy balance and PBE in a tubular crystallizer
using OpenFOAM. Farias et al. (2019) presented a liquid-solid Eulerian CFD model coupled with
KTGF and PBE to simulate a lovastatin/methanol crystallizer using OpenFOAM [49]. The number of
publications using OpenFOAM is increasing.

4.3. Digital Twins with CFD

A reliable CFD model is required to obtain meaningful results from the CFD [26], as mentioned
previously. Wang and Xiao (2016) [119] proposed a data-driven CFD modeling of turbulent flows.
The drag force (FD) for a porous medium domain, which was involved in a liquid-phase Eulerian CFD
model, was inferred by assimilating experimental data (e.g., velocity and turbulence kinetic energy)
and the CFD model prediction in an iterative ensemble Kalman method as an inversion approach [119].
If the experimental data are measured in real-time and provided to the CFD, a virtual machine realized
by the CFD can be synchronized with the real machine (experimental apparatus). The main feature
of DT is the real-time communication between the real and virtual machines, providing reliable
CFD results. However, the real and virtual machines may be different from each other because
errors can come from many sources, including a numerical discretization error or a modeling error.
The computational cost increases owing to the iterative ensemble method [119].

Lu et al. (2020) [111] reviewed the recent development of DT for smart manufacturing in the
context of Industry 4.0. DT, acting as a mirror of the real world, provides a smart tool for simulating,
predicting, and optimizing physical manufacturing processes. Studies on standards, communication
protocols, time-sensitive data processing, and the reliability of models need to be priorities for the next
stage of research in DT [111].

5. Conclusions

This review explored exclusively Eulerian CFD simulations of chemical and biological processes at
the multiscale in time and space. To shed light on the progress of CFD technologies in the past decade,
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CFD theories and their applications were reviewed in single and multiple phases. The following are
the key conclusions from the review:

(1) Chemical and biological processes have multiscale, multiphysics, and multiphase features
in nature.

(2) The Eulerian CFD model considering fluid as a continuum includes the volume of fluid (VOF)
model, the Eulerian multiphase (EM) model, and the kinetic theory of granular flow (KTGF).

(3) The Eulerian CFD has been used for designing, scaling up, and optimizing at the process-level.
Moreover, the Eulerian CFD is suitable for investigating the hydrodynamics (e.g., pressure, velocity,
and volume fraction) of a process following geometrical and operational modifications.

(4) RANS-based turbulence equations such as k-ε two-equation types are often used as a
general-purpose design tool. The direct numerical simulation (DNS) and large eddy simulation
(LES) may be impractical for most industrial flow conditions because of computational time.

(5) The Eulerian CFD has been applied to chemical and biological processes such as gas distributors,
combustors, gas storage tanks, bioreactors, fuel cells, random and structured-packing columns,
gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds.

(6) The critical task in multiscale modeling is to exchange information at the interface of neighboring
sub-domains. The multiscale CFD strategy interacting between micro- and macroscale domains can be
divided into concurrent and sequential couplings. Concurrent coupling is a powerful approach, but it
is more computationally prohibitive than the sequential approach.

(7) In the concurrent coupling framework, the Eulerian CFD at a macroscale is solved
simultaneously with a lattice Boltzmann method (LBM), kinetic Monte Carlo (KMC), or discrete
element model (DEM) at a micro- or mesoscale, updating information at each time step. In the
sequential coupling framework, several parameters required for the Eulerian CFD model are calculated
from a VOF or EMMS model at a micro- or mesoscale. When the model parameters are interconnected
at the two scales, several iterations are necessary to obtain a converged parameter value.

(8) Modeling, meshing, physical properties, and selection of a suitable turbulence model play an
important role in CFD simulations. In particular, the proper number of meshes should be determined
as a compromise between computation efficiency and accuracy. The mesh independence test is often
performed to determine a proper number of meshes in the verification step of the CFD calculation.

(9) Open-source packages such as OpenFOAM are widely used in CFD because one can customize
solvers and easily extend the numerical libraries.

(10) CFD models have to be validated by comparing the simulation results with experimental data
or suitable analytic solutions to provide meaningful results. If the experimental data are measured
in real-time and provided to the CFD, a virtual machine realized by the CFD can be synchronized
with the real machine (experimental apparatus). The main feature of digital twins (DT) is the
real-time communication between the real and virtual machines, providing reliable CFD results.
DT acting as a mirror of the real world provides a smart tool for simulating, predicting, and optimizing
physical processes.

(11) The multiscale methods are attractive for industrial applications. However, substantial
efforts in physical modeling and numerical implementation are still required before their widespread
implementation. A powerful parallelized computational capacity is needed for achieving multiscale
simulation and DT.
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