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Abstract: The aim of the work was to study the unusual regularities of propylene carbonate prepared
by carboxylation of propylene oxide in the presence of the catalytic system ZnBr2/Et4N+Br−. Using the
kinetic method, a long induction period was detected, followed by the rapid formation of propylene
carbonate in a quantitative yield, where the maximum turnover frequency (TOF) values reached
21,658 h−1. The regularities of the influence of the main process parameters on the induction period
duration and the reaction rate were established. Based on the results obtained and considering the
literature, assumptions about the mechanism of the process were proposed and ways for its further
study were outlined.

Keywords: propylene oxide carboxylation to propylene carbonate; catalytic system ZnBr2/Et4N+Br−;
unusual regularities of the process

1. Introduction

The catalytic carboxylation of α-oxides is one of the most effective methods for producing cyclic
carbonates, which are widely used as electrolytes for Li-batteries, solvents, monomers, etc. [1,2].
Amongst the numerous catalysts used for carrying out these processes, from a practical point of view,
zinc compounds in combination with quaternary ammonium salts ZnX2/R4N+X− (X = Hal, R = Alk)
are very promising [3,4]. It is known that each of the components of these systems, as a rule, is a
low-active catalyst in this reaction, but their combined use significantly increases the rate and ensures
mild processing conditions. It should be noted that these reactions are typically studied by determining
the yield of the final product, whereas the observation of changes in processing parameters (pressure
and temperature) over time are usually not carried out.

In this work, the preparation of propylene carbonate (PC) by the carboxylation of propylene oxide
(PO) was carried out together with the continuous automatic recording of the pressure and temperature
using electronic sensors. Since the studied reaction was used to obtain the PC labeled with a stable
carbon isotope 13C (an intermediate product in the synthesis of the diagnostic drug 13C-urea [5]) [6–8]
as shown in Equation (1), the process was carried out under conditions of CO2 deficiency (relative to
PO) for the economy of the labeled raw materials. This technique allowed us to reveal several unusual
features of the reaction, the study of which was the purpose of this work.
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2. Materials and Methods

2.1. Chemicals

Propylene oxide, zinc bromide, tetrabutylammonium bromide, tetrabutylammonium iodide,
and butyltriphenylphosphonium bromide (all 99% purity) were obtained from Acros Organics. Zinc
chloride, aluminum bromide (anhydrous), aluminum chloride hexahydrate, potassium iodide, catechol,
tetraethylammonium bromide, and triethanolamine were commercial chemicals (reagent grade) and
were used without purification. Carbon dioxide 99.99% was obtained from NII KM (Moscow, Russia).

2.2. Catalytic Experiments

The reaction was carried out in a 200 mL stainless steel thermostatted autoclave equipped with
sensors for automatic recording of temperature and pressure in 1-min increments. Automatic recording
of pressure was carried out using a PD100-DI6.0-111-0.5 sensor, and the temperature was measured with
a chromel-copel thermocouple. The signals of the pressure sensor and thermocouple were transmitted to
a TRM 200 pressure meter and then through an AC4 automatic converter (all equipment was purchased
from “Oven”, Moscow, Russia)—and finally—to the computer. The components of the catalytic system
were placed into the autoclave, and after sealing, it was evacuated and propylene oxide was loaded
using a siphon from a measuring vessel, and CO2 was supplied at the required pressure, followed by
the closure of the gas supply valve. Thereafter, the stirring and heating were turned on, and changes
in temperature and pressure during the reaction were registered. Upon process completion (pressure
drop stopping), the autoclave was cooled, the unreacted propylene oxide was removed using a water
jet vacuum-pump, and the resulting crude product was unloaded. Propylene carbonate was distilled
off on a rotary evaporator under vacuum at 82–84 ◦C/3 mm Hg (lit. m.p. 241.7 ◦C/760 mm Hg [9]).
The finished product had a nD = 1.4209 (lit. nD

20 = 1.4209 [9]) and a purity of more than 99% on the
1H NMR data in DMSO-d6 (δ, ppm): 1.37 d (3H, CH3, 3JCH–CH3 6.1 Hz), 4.06 m (1H, not equiv. CH2,
2JCH2 ≈

3JCH–CH2 7.3–8.6 Hz), 4.57 t (1H, not equiv. CH2, 2JCH2 ≈
3JCH–CH2 7.9–8.6 Hz), 4.89 m (1H, CH).

To determine the yield of the propylene carbonate, based on the CO2 loaded, the gas was loaded into
the autoclave from a small cylinder and weighed with an accuracy of 0.01 g before and after the process.

In a standard experiment, ZnBr2 (33.4 mg, 0.148 mmol) and Et4NBr (122.5 mg, 0.583 mmol) were
loaded into the autoclave, and after sealing and evacuating the autoclave, propylene oxide (20 mL,
16.6 g, 285.8 mmol) was added using the siphon. Then, CO2 was supplied from the weighted balloon
at a pressure of 15.6 bar such that after the second weighing of the balloon, the CO2 loading was
determined, which amounted to 11.92 g (6068.4 mL, 270.9 mmol). Stirring and heating to a temperature
of 103 ◦C commenced, and during the process, changes in pressure and temperature in the autoclave
were observed. After 150 min the pressure drop ceased, indicating that the reaction was complete.
Next, the autoclave was cooled, and the product was isolated according to the above procedure for
analysis. The rest of the experiments were carried out using the same method, the loads and the
conditions of which are presented below.

2.3. Product Analysis

Analysis of the impurities content in the obtained propylene carbonate was carried out using
a Crystallux-4000M gas chromatograph (from “Meta-chrom” company, Yoshkar-Ola, Russia) with a
flame ionization detector and a capillary column (25 m× 0.2 mm) with a stationary liquid phase SP-1000
(layer thickness 0.25 µm). Helium was used as the carrier gas (80 mL/min), the column temperature was
200 ◦C, and temperatures of the evaporator and detector were 230 and 200 ◦C, respectively. In addition,
2-methoxyacetophenone was used as the internal standard. PC analysis using NMR was performed on
a Bruker AVANCE 600 MHz spectrometer using a WinNMR data processing program from Bruker.
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2.4. Calculations

The reaction rate was determined as the maximum gas absorption rate at the inflection point on
the graph of the dependence of pressure in the reactor (p), at time (t), using the TableCurve 2D program
v5.01.05 (by SYSTAT Software Inc. as in Reference [10]). This was based on the best mathematical
description of the indicated dependence p = f (t) and the determination of the first derivative maximum
value rmax =

∣∣∣−dp/dt
∣∣∣
max.

3. Results

Table 1 shows a comparison of the various catalytic systems activity during the synthesis of
propylene carbonate under the conditions of obtaining a 13C-labeled product.

Even though Table 1 shows the influence of the processing conditions, the nature and composition
of the tested catalytic systems on their activity indicators (i.e., turnover number (TON) and turnover
frequency (TOF)), as well as the yield of the PC, the nature of the processes taking place over
time did not reveal. Therefore, to develop the most reasonable choice for the catalytic system, the
reaction was carried out while automatically recording the pressure and temperature in the reactor in
1-min increments.

Figure 1 shows the dependence of pressure and temperature on time in the presence of various
catalytic systems. Despite the different catalytic activities of these systems (see the TON and TOF
values in Table 1), the common feature between them was the pressure drop that began even during
the heating of the reaction mass (10–20 min after the start of heating). The reaction completion almost
lasted for an hour, which was accompanied by the complete absorption of CO2 and volatile propylene
oxide with a yield of high boiling propylene carbonate near 100%, which was not unusual.
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It should be noted that the ZnBr2/Bu4N+Br− system was used to develop the industrial process
of producing 13C-propylene carbonate [7]. Figure 1 shows the typical curves of the pressure and
temperature changes over time for the chosen processing mode of this system.
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Table 1. Carboxylation of propylene oxide under the conditions of the synthesis of 13C-propylene carbonate.

Run Catalyst (mol%) Cocatalyst (mol%) CO2/PO, mol/mol p0
1, bar T, ◦C Time, min Yield PC 2, % TON TOF 3, h−1

1 ZnBr2 (0.05) Bu4N+Br− (0.30) 0.74 12.0 114 80 97.0 1417 1214
2 ZnBr2 (0.05) Ph3BuP+Br− (0.28) 0.83 13.7 114 120 98.8 3217 958
3 o-C6H4(OH)2 (1.0) Bu4N+I− (1.0) 0.89 14.9 104 40 95.7 85 231
4 KI (1.0) (HOCH2CH2)3N (1.0) 0.99 17.0 120 100 97.3 96 115
5 ZnBr2 (0.05) Et4N+Br− (0.20) 0.95 15.6 103 150 93.8 1713 1285
6 ZnBr2 (0.05) Et4N+Br− (0.20) 0.37 7.0 103 70 98.5 717 2152
7 ZnBr2 (0.05) Et4N+Br− (0.20) 1.26 20.0 104 180 74.4 1839 1839
8 ZnBr2 (0.05) Et4N+Br− (0.20) 0.97 15.9 86 >300 4 94.7 1816 908
9 ZnBr2 (0.025) Et4N+Br− (0.20) 0.99 16.7 102 180 93.1 3603 1802
10 ZnBr2 (0.008) Et4N+Br− (0.20) 0.93 15.8 103 300 92.9 11,102 2961
11 ZnCl2 (0.06) Et4N+Br− (0.20) 0.89 15.4 100 210 99.3 1547 1237
12 ZnBr2 (0.05) – 0.93 15.2 102 360 No prod. 5 – –
13 – Et4N+Br− (0.20) 0.93 15.3 104 360 14.5 69 11
14 AlBr3 (0.07) Et4N+Br− (0.20) 0.91 15.4 103 >300 4 88.3 1211 242
15 AlCl3 × 6H2O (0.05) Et4N+Br− (0.20) 0.90 15.4 104 >300 4 64.5 1129 226

The volume of PO 20 mL. 1 The initial pressure of CO2 in the autoclave at room temperature. 2 The yield of the isolated product based on the loaded CO2 (see the experiment section). 3 To
eliminate the effect of the induction period, the TOF (turnover frequency) was counted from the moment gas began to be absorbed. 4 The process has been interrupted, but the reaction has
not ended. 5 No products.
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However, using the ZnBr2/Et4N+Br− catalytic system under the same conditions, these
dependencies acquired completely different characteristics (Figure 2). These include the appearance of
a long induction period (over 60 min), followed by rapid gas absorption, and the release of a noticeable
amount of heat (peak on the temperature curve). In this case, the reaction was completed at about
the same time, starting from the moment the pressure drop began. Under comparable conditions, the
absorption rates of the gases (see the experiment section) for the catalytic systems ZnBr2/Bu4N+Br−

and ZnBr2/Et4N+Br− were 3.5 and 4.4 bar/min, respectively.

ChemEngineering 2019, 3, x FOR PEER REVIEW 4 of 10 

the heating of the reaction mass (10–20 min after the start of heating). The reaction completion almost 
lasted for an hour, which was accompanied by the complete absorption of CO2 and volatile propylene 
oxide with a yield of high boiling propylene carbonate near 100%, which was not unusual. 

 
Figure 1. Pressure (solid lines) and temperature (dashed lines) changes during the carboxylation of 
propylene oxide. PO quantity—20 mL; for other conditions see Table 1 (Runs 1–4). 

It should be noted that the ZnBr2/Bu4N+Br− system was used to develop the industrial process of 
producing 13C-propylene carbonate [7]. Figure 1 shows the typical curves of the pressure and 
temperature changes over time for the chosen processing mode of this system. 

However, using the ZnBr2/Et4N+Br− catalytic system under the same conditions, these 
dependencies acquired completely different characteristics (Figure 2). These include the appearance 
of a long induction period (over 60 min), followed by rapid gas absorption, and the release of a 
noticeable amount of heat (peak on the temperature curve). In this case, the reaction was completed 
at about the same time, starting from the moment the pressure drop began. Under comparable 
conditions, the absorption rates of the gases (see the experiment section) for the catalytic systems 
ZnBr2/Bu4N+Br− and ZnBr2/Et4N+Br− were 3.5 and 4.4 bar/min, respectively. 

 
Figure 2. Comparison of the catalytic systems ZnX2/Et4N+Br− (X = Cl, Br) in the synthesis of PC. Solid
lines–pressure; dashed lines–temperature; PO quantity–20 mL; molar ratio CO2/PO ≈ 0.9 (Table 1,
Runs 5, 11).

Moreover, the features of the kinetics process in the system with Et4N+Br− appeared more clearly
when using ZnCl2 (instead of zinc bromide) (Figure 2). Under comparable conditions, the induction
period increased significantly (from 70 to 135 min) and the gas absorption rate increased by about
three times (from 2.5 to 7.6 bar/min). Thus, by using Et4N+Br− in the considered catalytic system
based on ZnX2 (X–halogen), the process ran significantly different to that in the presence of Bu4N+Br−.
Interestingly, the maximum TOF value for the ZnCl2/Et4N+Br− system was 21,658 h−1 in terms of the
highest gas absorption rate (Figure 2, Run 11 in Table 1). This was quite large since the greatest activity
of the known catalytic system of this process based on porphyrin metal complexes is 46,000 h−1 [11].

In the case of the ZnBr2/Et4N+Br− system, a change in the initial loading of CO2 and temperature
significantly affected the duration of the induction period and the rate of the process. Figure 3a shows
that with an increasing p0 CO2 from 7 bar to 20 bar, the duration of the induction period is increased
2.5 times reaching about 100 min. At the same time, the process rate varied according to the extremal
curve reaching a maximum in the region of the stoichiometric ratio CO2/PO ≈ 1:1. A temperature
increase (Figure 3b) from 86 ◦C to 117 ◦C caused a significant decrease in the induction period (from
185 to 40 min); whilst the temperature dependence of the process rate did not obey the Arrhenius law,
which may have indicated a change in the rate-limiting stage at a temperature near 100 ◦C. Plots of
these experiments (dependences of pressure and temperature versus time) are shown in Figure A1.

To clarify the nature of the induction period and the possibility of generating the active form
of the catalyst, an experiment was conducted involving the addition of the reaction mass, formed in
the other run during the gas uptake, into the initial mixture of the reaction. For this purpose, the
standard experiment was stopped at the start of gas absorption (i.e., at a 10–15% pressure drop level),
and the resulting reaction mass at an amount of 7% was added to the initial mixture of the subsequent
experiment, where the experiment was carried out under the same conditions. It turned out that such
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an additive shortened the induction period by almost three times from 72 to 25 min. It was also found
that the loading of the CO2 into the mixture of the catalyst and PO, heated to a given temperature, led
to the full disappearance of the induction period (Figure 4).
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Figure 4. The effect of the PC synthesis method on the kinetics of the process: (1) under standard
conditions (Run 5 in Table 1, i.e., ZnBr2/Et4N+Br− = 1:4. PO quantity—20 mL, ZnBr2—0.05 mol%); (2)
with the addition of 7% of the reaction mass formed at the beginning of gas absorption to the initial
mixture in Run 5 under standard conditions; and (3) CO2 is introduced into the heated mixture of the
catalyst and PO (loadings as in Run 5).

4. Discussion

Figure 4 shows that during the induction period, an active complex of PO with a catalyst is
formed. The subsequent addition of CO2 led to a rapid drop in the total pressure in the reactor with
the formation of the desired propylene carbonate. The results obtained and the data on the influence
of the initial pressure of CO2 (Figure 3a) indicated that the active complex was formed, and apparently
without the participation of CO2. In this case, CO2 could have a deactivating effect on the initial form
of the catalyst, for example, by reversibly binding zinc complexes in a manner like Equation (2) [12,13],
which causes an increase in the induction period duration with the increase in p0 CO2. During the
process, the catalytically active centers are released, and their concentration increases and, therefore,
the reaction rate increases as well. It should be noted that in all the experiments presented in Figure 4,
the PC yield was near quantitative.
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It was noteworthy that in the experiments performed, the induction period reached 70% of the total
duration of the synthesis. Such phenomena are characteristic of autocatalytic processes [14], especially
for processes with a “high degree” of autocatalysis and in particular for cubic autocatalysis, for example,
the reaction A + 2X→ 3X + C [15,16] (Figure 5).
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Among the known models of autocatalytic processes, a model for the mechanism called the
“Brusselator model” described in Reference [15] (Equation (3)) corresponds very closely to this case:

A→ X
B↔ Y

Y + 2X→ 3X + C
C + X→ P,

(3)

where A, B, and P mean PO, CO2, and PC, respectively, while X, Y, and C are the intermediate products
of the interaction between PO and CO2 with a catalyst. In this case, the process rate dP/dt follows
the equation r = f

(
C2

X

)
, i.e., sharp increases in the rate occur as the X concentration increases, then X

transforms into the final product P.
To determine the nature of the intermediate products, the various means of α-oxide carboxylation

during the induction period were considered. It is known that these processes can proceed with
the formation of not only cyclic carbonates, but also polyethers and polyesters, i.e., polyglycols and
polycarbonates according to Equation (4) [17,18].
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In the absence of water (as in the experiments described above), the synthesis of polyglycols in
solutions of metal salts or quaternary ammonium leads to the formation of crown ethers [19]. On the other
hand, polycarbonates formed during the carboxylation of α-oxides can be destructed with the formation
of monomeric cyclic carbonates (the “backbiting” mechanism) according to Equation (5) [12,20].
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Therefore, it could be expected that during the induction period, some of the PO oligomerization
products are formed, which then rapidly turn into a target carbonate. In this case, in Equation (3),
X, Y, and C are intermediate structures (or complexes) based on polypropylene glycol, CO2, and
polypropylene carbonate, respectively. However, attempts to detect such an oligomeric product for a
long induction period (by stopping the synthesis, removal of volatile PO under vacuum, and analysis
of the residual mass) have proved to be unsuccessful.

Apparently, in our case, during the formation of an active complex of the catalyst and PO, no
significant number of high-molecular products were formed, which could be formed in catalytic
amounts (see Table 1). This hypothesis is supported by the literature on the catalytic activity of
metal complexes with crown ethers [21–23] and polyglycols [24] in α-oxide carboxylation with the
formation of cyclic carbonates. The catalytic activity of hydroxyl derivatives of polyglycols has also
been reported, even in the absence of metals, due to the hydroxyl protons which form a hydrogen bond
with oxygen in the initial α-oxide [25]. In addition, several studies [2,26] have suggested the activation
of CO2 under the action of quaternary ammonium or phosphonium salts, including the action of
liberated free amines or phosphines [21,27]. Therefore, in the processes of α-oxide carboxylation in
the presence of ZnX2/R4N+X−, small amounts of polyglycols with terminal ammonium groups can
be formed [28]. Such products can form active complexes that are capable of activating CO2 using
terminal ammonium groups and can also coordinate zinc (similar to crown ethers [21,22]) as a Lewis
center for α-oxide activation.

Taking into consideration the above, the induction period may be due to the formation of propylene
oxide oligomers of a certain size, which are able to coordinate zinc and which can possibly have
terminal ammonium groups. This process can proceed together with the gradual release of zinc
centers initially deactivated by CO2 (see the dependence of the induction period on p0 CO2). Having
reached a required concentration, such complexes catalyze (possibly at a high rate) the process of
propylene oxide carboxylation to produce propylene carbonate. In addition, a certain contribution to
the formation of the active forms of the catalyst during the induction period can be achieved through the
depolymerization of the initial ZnX2 salt and the formation of complexes, for example, the composition
ZnX2(R4N+X−)2 [29]. The duration of this process may depend on the nature of the halogen and the
quaternary ammonium salt.

5. Conclusions

Therefore, unlike many well-known catalytic systems for producing propylene carbonate through
propylene oxide carboxylation (including metal salts or organic catalysts in the presence of various
halides), the use of the ZnX2/Et4N+Br− system (X = Br, Cl) leads to a longer induction period after
which the reaction accelerates with the formation of propylene carbonate. In this case, substantial heat
release occurs, and very high catalyst productivity is observed (TOF reaches 21,658 h−1 in the region of
the maximum process rate values). Under selected conditions (closed system, mole loads of CO2 and
PO are comparable), the increase in the initial pressure of the CO2 leads to a noticeable increase in
the duration of the induction period. Moreover, at a molar ratio of CO2/PO ≈ 1:1, the rate reaches a
maximum and with a further rise in the CO2/PO, the rate decreases. In addition, with an increase in
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temperature, the induction period is rapidly shortened. The introduction of part of the reaction mass
from the gas uptake stage into the initial mixture significantly reduces the induction period which
completely disappears when the CO2 is supplied to the heated mixture of the catalyst with PO.

Unfortunately, the data obtained has yet to allow us to understand the reasons for such evident
differences in the behavior of ZnBr2/Et4N+Br− from ZnBr2/Bu4N+Br−, as well as many other catalytic
systems of propylene oxide carboxylation to propylene carbonate [30]. The clarification of the mechanism
requires further study using the method of stoichiometric interaction of propylene oxide with catalytic
system components, or by using spectral studies of this reaction in situ. One cannot exclude that
regularities like the ones found in this work may be inherent to many other catalytic systems that are
used in obtaining cyclic carbonates. Therefore, the study of such features would significantly improve
the efficiency of these processes by reducing the induction period while maintaining a high rate of the
target product formation using simple and cheap catalytic systems.
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