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Abstract: Some contaminants of emerging concern (CECs) are known to survive conventional
wastewater treatment, which introduces them back to the environment, allowing them to potentially
cycle into drinking water. This is especially concerning because of the inherent ability of some
CECs to induce physiological effects in humans at very low doses. Advanced oxidation processes
(AOPs) such as TiO2-based photocatalysis are of great interest for addressing CECs in aqueous
environments. Natural water resources often contain dissolved metal cation concentrations in excess
of targeted CEC concentrations. These cations may significantly adversely impact the degradation of
CECs by scavenging TiO2 surface generated electrons. Consequently, simple pseudo-first-order or
Langmuir-Hinshelwood kinetics are not sufficient for reactor design and process analysis in some
scenarios. Rhodamine Basic Violet 10 (Rhodamine B) dye and dissolved [Cu2+] cations were studied
as reaction surrogates to demonstrate that TiO2-catalyzed degradation for very dilute solutions is
almost entirely due to the homogeneous reaction with hydroxyl radicals, and that in this scenario,
the hole trapping pathway has a negligible impact. Chemical reaction kinetic studies were then
carried out to develop a robust model for RB-[Cu2+] reactions that is exact in the electron pathways
for hydroxyl radical production and electron scavenging.
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1. Introduction

There is a critical need for highly-efficient, new methods for the treatment of toxic and biologically
persistent compounds that are not efficiently removed by conventional water treatment processes.
This need has led to a large amount of interest in semiconductor photooxidative degradation.
Semiconductor-based photocatalysis is an advanced oxidation process (AOP) that shows promise for
the removal of organic pollutants from water [1–3]. Ultra Violet (UV) enhanced photocatalysis is also
an effective method for disinfection, similar in application to existing UV enhanced chlorination water
disinfection processes [4,5].

Semiconductor photocatalysis can be more appealing than the more conventional chemical
oxidation methods because semiconductors are inexpensive, nontoxic, and capable of extended use
without substantial loss of photocatalytic activity [6]. The development of photocatalytic routes that
rely on light as an energy source to drive chemical reactions under mild reaction conditions is highly
desirable. Furthermore, semiconductor particles recovered by filtration or centrifugation retain much of
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their native activity after repeated catalytic cycles. The term photodegradation is usually used to refer
to complete oxidative mineralization, i.e., the conversion of organic compounds to CO2, H2O, NO3 or
other oxides, halide ions, phosphates, etc. It has been widely demonstrated that the semiconductor TiO2

is an effective photocatalyst for the destruction of many organic contaminates. [7–11]. Halogenated
substrates [12] have been decomposed successfully on irradiated semiconductor suspensions.
When fluoroalkenes [13] or fluoroaromatics [14] were exposed to an irradiated, air-saturated,
aqueous suspension of anatase TiO2 with UV light at room temperature, CO2 and HF were formed.
The irradiation of a solution of chlorobenzene over TiO2 similarly leads to complete mineralization
to CO2, H2O, and HCl [15]. Extensive studies of the photocatalytic degradation of organochlorine
compounds have been undertaken because of their known carcinogenicity, and because they are
formed during water purification by chlorination. Perchloroethylenes, chloroethanes, chlorinated acetic
acids, and chlorobenzenes, for example, are all readily mineralized on irradiated TiO2 suspensions.
Chloroform and carbon tetrachloride, other common contaminants of municipal water supplies,
are also mineralized [16–19] by UV irradiated TiO2. The primary photochemical processes occurring
upon irradiation of a semiconductor are now well established [20–23]. Many of the intermediates
leading to mineralization of organic substrates on aqueous TiO2 suspensions are hydroxylated [24,25].
Numerous studies have assumed competing roles for photo-generated OH radicals and for trapped
holes in photocatalysis [26–31]. Reaction kinetic mechanisms have been proposed that suggest
that at low substrate coverages associated with low concentrations, the photo-generated hydroxy
radical diffuses into the homogeneous solution where it effects photooxidation, while it reacts at the
surface when the substrate is present at higher coverages. This suggests that for low concentrations,
the homogeneous OH radical production by the electron pathway is favored over the surface mediated
hole pathway [32]. Furthermore, the OH radical dye degradation pathway is also favored over the
direct hole pathway in a similar fashion.

The class of contaminants targeted by our reactor design includes Pharmaceuticals and Personal
Care Products (PPCP) and other contaminants of emerging concern (CECs) which are environmentally
significant at low part-per-billion (ppb) levels [33]. Rhodamine B (RB) dye was used as a surrogate for
our chemical reaction kinetics for contaminants at these levels. We used [Cu2+] as the metal cation
scavenger, specifically in order to compare our results with Aarthi and Madras, 2004 [34]. Rhodamine
dye, a significant water contaminant in its own right, is easily measured at nanogram per liter levels
due to its fluorescence properties, making it an ideal candidate for this concentration range.

Simple pseudo first order or Langmuir-Hinshelwood kinetics may be used to model a particular
CEC/scavenger system, but these approximations do not necessarily inform a broader application to
CECs in aqueous environments. The role of substrate adsorption in photocatalysis can be modeled by
use of the Langmuir-Hinshelwood (LH) kinetics model applied to reactions occurring at a solid-liquid
interface. LH model kinetics assume that the surface coverage of the substrate (θ) is related to the
initial concentration and the apparent adsorption equilibrium constant K as:

θ =
K[C]

1 + K[C]
(1)

Therefore, the pseudo first order rate of degradation of the dye can be written in terms of single
component LH kinetics as:

rLH = − d[C]

dt
=

kK[C]

1 + K[C]
(2)

The following expression has been suggested to account for reactions involving competition
between two or more species for a single adsorption site:

r[LH] = −
d[D]

dt
=

kK[D]

(1 + K[D] + ∑i KiCi)
(3)
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Generally, the linearity of the plot of 1/r[LH] versus 1/C tests the validly of the LH model
and the parameters k and K are derived from the slope and y intercept of the linear fit to the plot.
This linearity is often interpreted as proof of preadoption of the substrate before reaction, but this
is often not the case, and clearly not the sole reaction pathway for our model. As a matter of fact,
studies have shown that the same LH rate expression is obtained for adsorbed and free substrates [35].
Consequently, while the LH model avoids the necessity for a complex mathematical treatment and the
need for several experimentally undeterminable parameters, it has severe limitations for probing the
underlying chemical kinetics and mass transfer mechanisms.

The kinetic model reported in this work for the photocatalytic degradation of dyes is an extension
of the models reported in previous studies [34,36,37]. The substrate concentrations studied here are an
order of magnitude lower than these studies, with the specific goal of going a step beyond the lumped
parameter models of these studies for the low concentration regime. The resulting model is robust,
and its parameters are the chemical reaction rate constant for the dye degradation and the adsorption
equilibrium constants for the dye and Cu2+ respectively. This is notable importance because these
parameters can be determined individually, independent of intermediate parameters that cannot be
determined experimentally; this is not the case with lumped parameter approaches. The detailed
mechanisms for the chemical kinetics and mass transfer are provided in Appendix A. The kinetics and
mass transfer mechanisms in Appendix A are exhaustive in the possible pathways for the degradation
of organic water contaminants by TiO2 catalyzed photocatalysis, and the low concentration regime
model is generic, in that its parameters are specific to a particular contaminant retardant system.
Contaminants that degrade in this manner are therefore surrogated by the Rhodamine B/[Cu2+]
experiments. The results below support our hypotheses, i.e., that a mechanistic approach of the
surrogate reaction kinetics based on the limiting nature of the kinetics for dilute solutions would
provide a more robust model for the reaction kinetics than a simple curve fitting or lumped parameter
approach. In other words, it provides additional insight into the underlying complex interaction of
reaction kinetics and adsorption equilibrium processes. This was especially important since our study
also addressed the impact of transition metal cations typically present in drinking water supplies.

2. Materials and Methods

Titanium (IV) oxide, in the form of anatase nano-powder with particle size <25 nm and 99.7%
purity basis from Sigma-Aldrich Chemistry, St. Louis, MO, USA, was used as the photocatalytic
material. Serial dilutions of 20% aqueous solution of Acros Organics’ Rhodamine B and reagent
grade Fisher Scientific CuSO4 were used for all experimental runs. Solutions of RB concentrations
[D] ranging from 0.1–0.5 mg/L and copper cation concentration [Cu2+] ranging from 0.0–0.5 mg/L
with 0.02 mg/L suspended P-25 catalyst were irradiated in a 2.0 L, cylindrical quartz glass bench
scale reactor equipped with 365 nm LED lamps [38]. The inside diameter and reaction depth of the
cylindrical reactor were 15 and 20 cm respectively; it was equipped with 300, 3 mW, 365 nm output
lamps (NSHU5518), evenly distributed over its approximately 1000 cm2 surface. The reaction system
temperature was monitored and kept approximately constant at 298 K by fan cooling. Magnetic stirring
was used to maintain homogeneity and catalyst suspension. The water supply was distillated and
deionized. The reaction volume was 1 L, and stirring speed was approximately 100 rpm for all
experiments. The reactor was initially stirred for 20 min without UV irradiation to reach the equilibrium
adsorption/desorption of the dye on the catalyst. After 20 min, the UV light was turned on and an
initial sample was taken; subsequent samples were taken hourly. The sample volume was 2.0 mL.
Samples were centrifuged and pipetted for before measurement. A Turner Designs fluorimeter model
TD-700 was used to measure the concentration of the dye in each sample. The fluorimeter was
calibrated every day with freshly prepared standards. Samples were diluted to remain in the linear
range for the TD-700 for Rhodamine B of 0.001 to 0.100 mg/L [39].
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3. Results and Discussion

The detailed stoichiometric balances in Appendix A, and application of the quasi-steady state
assumption (QSSA) for all species, leads to [34,36,37]:

−rD = kOH[D] + k1[D]((
k3

1 + K2[D]
+

k4

1 + K2[D]
)× 1

1 + K6[Cu2+]
)) (4)

where rD is the dye degradation rate and K2 and K6 are adsorption equilibrium constants for the RB and
[Cu2+] respectively as described by Equations (A18a) and (A20b). k1, k3 and k4 are chemical reaction rate
constants for various intermediate species described in Appendix A as Equations (A17b), (A18b) and
(A18c) respectively. Throughout Appendix A and Equations (4)–(7), the constants designated by
lower-case k’s designate reaction rate constants and upper-case K’s designate adsorption equilibrium
constants. The reaction rate constants and adsorption equilibrium constants are derived from the
detailed stoichiometry equations given by Equations (A1)–(A8c). The reaction between the substrate
and a photo-generated oxidant can occur while both species are adsorbed, with an adsorbed substrate
and a free oxidant, with a bound oxidant and a free substrate, or with both the oxidant and substrate
freely dissolved. Unfortunately, an experimental distinction between these pathways, based on
chemical kinetics alone (fitting reaction data to Equation (4)), is not possible. Our model addresses this
by providing a robust parametrization of Equation (4) by capitalizing on the preference of the electron
pathway for dilute solutions with low surface substrate coverage.

Equation (4) can be simplified by inverting both sides and then neglecting the squared [D] terms
to give:

1
rD

=

(
1
[D]

+ K2

)
(1 + K6[Cu2+])

(k0 + K6k7[Cu2+])
(5)

where k0, koh and k7 are given by Equations (A17a), (A22a) and (A22b) respectively. A further
simplification to Equation (5) is obtained by setting [Cu2+] equal to zero:

1
rD

= (
1
[D]

+ K2)
1
k0

(6)

where rD0 is the initial dye degradation reaction rate.
The above parameters, that were determined from the experimental data in order to parameterize

the model, were k0, K2, k7 and K6. Equation (6) represents a linear relationship between the inverse of
the initial reaction rate (1/rD0) and the inverse of the dye concentration (1/[D]) with slope 1/k0 and
intercept K2/k0 for the case where [Cu2+] = 0. A series of experimental runs were then conducted with
[Cu2+] = 0 and for various initial values of [D] ranging from 0.1 to 0.5 mg/L. The initial reaction rates
for these runs was fit to Equation (6), as shown in Figure 1. The slope and intercept of the plot gave k0

= 0.008 min−1 and K2 = 0.019 L/mg. A series of runs was then conducted with the initial concentration
of the dye [D] at 0.5 mg/L and for [Cu2+] ranging from 0.0625 to 0.5 mg/L. Using the values of k0 and
K2 obtained from Equation (6), the data was regressed non-linearly to fit Equation (5) as shown in
Figure 2. The resulting values K6 = 5.5 L/mg and k7 = 0.0001 min−1 respectively.

Setting the small value for k7 obtained from the numerical fit of the experimental data to zero
has a cascade effect when interpreted in terms of the stoichiometric equations in Appendix A. Firstly,
Equation (A22a) immediately gives kOH = 0, indicating that the reaction rate constants khr,a and khr,b in
Equations (A7a) and (A7b), representing the direct hole dye degradation pathway, are negligibly small.
Secondly, combining Equations (A22a) and (A22b) gives k0 = k1k4; finally, interpretation of Equation
(A22b) in terms of these results gives k3 = 0, indicating that the reaction rate constants ktr,a and ktr,b in
Equations (A3a) and (A3b) representing the direct hole hydroxyl radical production pathway are also
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negligibly small. Incorporating these results into Equation (4) leads to the desired low concentration
regime model:

−rD = −d[D]

dt
=

k0[D]

(1 + K2[D]) (1 + K6[Cu2+])
(7)

which that is first order in [D] and limited by [D] and [Cu2+] TiO2 surface adsorption. The resulting
electron pathway for RB degradation shown by the green arrows in Scheme 1 is an exact mechanism
for the limiting conditions and assumptions.
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Scheme 1. Simplified Electron Pathway Model (Equation (7)) for Low Concentration and [Cu2+]
as Scavenger.

The model is validated by fitting it to the experimental data in Figure 3. The concentration versus
time plots for [Cu2+] ranging from 0–0.375 mg/L are shown in Figure 4. The experimental concentration
data are accurately fitted by the pseudo-first-order reaction kinetics constants, ranging from 0.002–0.008
min−1; the three parameter LH model (Equation (3)) would give an even more accurate representation
of the data. Furthermore, Equation (7) is very similar to the LH result in Equation (3), rewritten here in
terms of [D] and [Cu2+] and using the nomenclature of Equation (7) as:

r[LH] = −
d[D]

dt
=

k0K2[D]

(1 + K2[D] + K6[Cu2+])
(8)

The presence of the lumped parameter in the numerator of Equation (8) is significant, but the
critical difference between LH model kinetics and the mechanistic result given by Equation (7) is
the information contained in the cross-term in the denominator of the model that is lost due to
the simplifying assumption of the LH model that there is no interaction (competition) between the
RB and [Cu2+] molecules at a particular catalyst adsorption site. Expanding the denominator of
Equation (8) gives:

−rD = −d[D]

dt
=

k0[D]

(1 + K2[D]) + K2K6[Cu2+][D] + K6[Cu2+])
. (9)

It is obvious, due to the magnitude of K6, that the (K6 [Cu2+]) term is controlling for adsorption
of [Cu2+], but that the controlling factors for [D] adsorption are more complex. Figure 5 shows the
magnitude of the (K2 [D]) and (K2 (K6 [D][Cu2+]) terms as a function of rD for [Cu2+] of 0.0625 and
0.375 mg/L. The Figure shows that for the more dilute [Cu2+], the interaction term is practically
negligible and that the K2 [D] term is predominant. At the higher [Cu2+], the (K2 (K6 [D][Cu2+]) term
that is not modeled is dominant.
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4. Conclusions

In this study, a robust kinetics model for the degradation of Rhodamine B dye in the presences of
Cu2+ was developed. The model is an extension of the models reported in previous studies [34,36,37],
but specifically targets substrate concentrations an order of magnitude lower, in order to address the
concentration regimes of CECs in drinking water supplies. Within these concentration constraints,
the chemical kinetics and mass transfer mechanisms developed are exhaustive of all the degradation
pathways available for any organic CEC/scavenger system, thus supporting the concept of a surrogate
approach. The model was contrasted to the LH kinetics model that is widely used to accurately model
chemical reactions at the solid-liquid interface. It was analytically demonstrated that the LH model
does not address interaction between the adsorbing substrate and scavenger molecules, while our
model does. The model indicates that the impact of this interaction is negligible for low [Cu2+],
but becomes a predominant rate-limiting controller for higher [Cu2+].
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writing—review and editing, H.A.E.A., A.A., R.P., L.S., and S.K.H.; funding acquisition, L.S., and S.K.H.
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Appendix A

The step by step chemical reaction mass transfer mechanism is provided as follows [33,35]:
When TiO2 is exposed to UV light, electrons (e−) and holes (h+

VB) are generated:

TiO2
ke→ h+

VB + e− (A1)

When the hole and electron recombine, they generate heat:

h+
VB + e− → heat (A2)
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Electrons and holes result in the formation of Hydroxyl radicals. S denotes TiO2 surface
adsorption sites and S- represents an adsorbed species. For example, S-H2O represents an adsorbed
water molecule.

a. Holes:
S-OH− + h+

VB
ktr, a

⇔ S-OH• (A3a)

S-H2O + h+
VB

ktr, b

⇔ S-OH• + H+ (A3b)

b. Electrons:
e− + O2

ke1→ O2
− (A4a)

O2
− + e− + 2H+ ke2→ H2O2 (A4b)

2O2
− + 2H+ ke3→ H2O2 + O2 (A4c)

H2O2 + e−
ke4→ OH• + OH− (A4d)

Hydroxyl radicals, dye molecules and scavengers, if any, are then adsorbed by TiO2.
c. Dye:

S + D
kD↔ S-D, KD = kD/kD

′ (A5a)

d. Hydroxyl radical:

S + OH•
kOH↔ S-OH•, KOH = kOH/kOH

′ (A5b)

e. Cu2+:
S + Cu2+ kCu↔ S-Cu2+, KCu2+ = kCu2+/kCu2+

′ (A5c)

In this case copper ions are reduced to Cu+:

e− + Cu2+ ke5→ Cu+ (A6a)

e− + S-Cu2+ ke6→ S-Cu+ (A6b)

Dye that is adsorbed by TiO2 and unreacted dye molecules react with holes and radical
hydroxyl groups.

f. Direct holes attack:

S-D + h+
VB

khr, a→ S-D
◦+ → end species (A7a)

D + h+
VB

khr, b→ D
◦+ → end species (A7b)

g. Hydroxyl radicals attack:

S-D + S-OH• kra→ S + S-D
′0 → end species (A8a)

D + S-OH•
krb→ S + D

′0 → end species (A8b)

S-D + OH• krc→ S + S-D
′0 → end species (A8c)

D + OH•
krd→ S + D

′0 → end species (A8d)
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The balance of the total hydroxyl group is given as:

d([OH•] + [S-OH•])/dt = ktr [S-OH] [h+
VB] − k′tr [S-OH] +

ktr[S-H2O] [h+
VB]−k′tr [S-OH] [H+] − kra[S-D] [S-OH]− krb[D][S-OH]

− krc[S-D] [OH] − krd[D][OH] +ke4[H2O2] [e−]
(A9)

The electron concentration balance is given as:

d([e− ])
dt = ke[S]− kre[e−][h+

VB]− ke1[e−][O2]− ke2[e−][O2= ][H+]2

−ke4[H2O2][e−]− ke5[e−][Cu2+]− ke6[e−][S-Cu2+]
(A10)

The dye degradation rate is given by:

−rd = khr,a[S-D][h+
VB] + khr,b[D][h+

VB] + kra[S-D][S-OH•]
+krb[D][S-OH•] + krc[S-D][OH•] + krd[D][OH•]

(A11)

Adsorption equilibrium surface concentrations are given by:

[S-OH•] = KOH[S][OH•] (A12)

[S-D] = KD[S][D] (A13)

[S-Cu2+] = KCu2+ [S][Cu2+] (A14)

Hydroxyl radical concentration can be expressed as:

[OH•] =
[ktr {[S-OH−] + [S-H2O]} [h+

VB] + ke4 [H2O] [e−]]
[KOH{ktr[S]{1 + [H+]}+ kraKD[S][D][S] + krb[D][S]}+ krcKD[S][D] + krd[D]]

(A15)

Electron concentration is expressed as:

[e−] =
ke[S]

kr[h+
VB] + ke5[Cu2+]ke6KC[S][Cu2+]

(A16)

Because [h+
VB] is invariant, the degradation rate can be rewritten as:

−rd = koh [D] + k1 [D] [OH] (A17)

where
koh = {khr,aKD[S] + khr,b}[h+

VB] (A17a)

k1 = kra KD KOH [S]2 +krb KOH [S] + krc KD [S] + krd (A17b)

Therefore, [OH•] is expressed as:

[OH•] =
k3

1 + K2 [D]
+

k4,0[e−]
1 + K2 [D]

(A18)

where,

K2 =
kraKD[S][S] + krb[S] + krcKD[S] + krd

KOHk′tr[S]{1 + [H+]}
(A18a)

k3 =
ktr{[S-OH−] + [S-H2O]}[h+

VB]

KOHk′tr[S]{1 + [H+]}
(A18b)

k4 =
ke4[H2O2]

KOH k′tr[S]{1 + [H+]}
(A18c)



ChemEngineering 2018, 2, 33 11 of 13

where again upper-case K’s are equilibrium constants, and lower-case k’s are reaction rates.
Substituting Equation (A18) in Equation (A17) gives:

− rD = koh[D] + k1[D]{ k3

1 + K2 + [D]
+ { k4,0[e−]

1 + K2[D]
}} (A19)

from Equation (16)

[e−] =
k5

1 + K6[Cu2+]
(A20)

where

k5 =
ke[S]

kr[h+
VB]

(A20a)

K6 =
ke5 + ke6Kc[S]

kr[h+
VB]

(A20b)

Substituting Equation (A20) into Equation (A19), gives:

− rD = koh[D] + k1[D]{ k3

1 + K2 + [D]
+ { k4

1 + K2[D]
× 1

1 + K6[Cu2+]
}}. (A21)

Inverting Equation (A21) and neglecting the quadratic term of [D] gives:

1
rD

=

(
1
[D]

+ K2

)
(1 + K6[Cu2+])

(k0 + K6k7[Cu2+])
(A22)

where
k0 = koh + k1k3 + k1k4 (A22a)

k7 = koh + k1k3 (A22b)
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