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Abstract: Functionally graded materials (FGMs) have wide applications in different branches of
engineering such as aerospace, mechanics, and biomechanics. Investigation of the mechanical
behaviors of structures made of these materials has been performed widely using classical elasticity
theories in micro/nano scale. In this research, static, dynamic and vibrational behaviors of functional
micro and nanobeams were investigated using non-local theory. Governing linear equations of the
problem were driven using non-local theory and solved using an analytical method for different
boundary conditions. Effects of the axial load, the non-local parameter and the power index on the
natural frequency of different boundary condition are assessed. Then, the obtained results were
compared with those obtained from classical theory. These results showed that a non-local effect
could greatly affect the behaviors of these beams, especially at nano scale.
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1. Introduction

Functionally graded (FG) materials are composite materials with different microstructures for
different materials with specific gradients, which result in different material properties such as material
density, shear modulus and elasticity modulus [1–7]. FG materials are designed to achieve the optimal
distributions of component materials suitable for certain applications [8–12]. These materials provide
various advantages in different engineering applications [9,13–18], such as lower stress intensity
factors, improved stress spreading, enhanced corrosion resistance, higher thermal resistance and higher
fracture toughness. Indeed, the properties of FG materials can be witnessed in some natural structures
(such as sea shell and bone) and better understanding of these properties can help us synthesize new
materials [19–24].

Precise designs are required for minimizing unwanted vibrations, because these vibrations
waste energy and create noise. Small-scale structures show great size-dependent effects. Therefore,
size-dependent vibration analyses on small-scaled FG beam structures are of critical importance [25,26].
The vibrational behaviors of small-scaled FG beam structures cannot be accurately predicted using
classical elasticity theory; therefore, some non-classical continuum mechanical theories such as strain
gradient theory, non-local strain gradient theory and non-local elasticity theory have been successfully
developed and applied to precisely evaluate size-dependent effects on the mechanical behaviors of
small-scaled structures [27–29].

Recently, non-local elastic theory has attracted the attention of many authors due to its promising
features making it possible to perform viable simulations taking into account scale effects in
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nano-structures; especially in nano-beams applied as sensors and actuators. Several existing beam
theories, such as the Levinson, Reddy, Timoshenko and Euler–Bernoulli beam theories, have been
rearranged using Eringen’s non-local differential constitutive relations. Also, motion equations of
non-local theories were derived and variational statements in terms of generalized displacements
were presented. Buckling, vibration and bending analytical solutions were found using non-local
theories to determine non-local behavior effects on natural frequencies, buckling loads and deflections.
Theoretical developments and numerical solutions given here provide references for non-local shell,
plate and beam theories [30–34]. Classical continuum theories mostly rely on hyperelastic constitutive
relations assuming that stress at a certain point is a function of strain at that point. In addition,
non-local continuum mechanics assume stress at a point to be related to strain values at all points of that
continuum. These theories provide information on inter-atom forces and introduce internal length scale
into constitutive equations. Non-local elasticity was first introduced in the works of Eringen [35–37]
and Eringen and Edelen [38]. Non-local elasticity theory has been applied in the investigation of
dislocation and fracture mechanics, surface tension fluids, wave propagations in composites, lattice
dispersions in elastic waves, etc. [6–12]. Wang et al. [39] employed non-local elasticity constitutive
equations to investigate the buckling and vibration of carbon nanotubes via shell and beam theories.

The buckling of axially FG nanobeams has been studied in [40–43] using Euler–Bernoulli theory.
In [40], functional grading was performed in both axial and transverse directions. Researchers [13]
studied the exponential variation of stiffness and Rahmani et al. [42] employed non-local theory
to analyze double FG nanobeam buckling. Li et al. [44] applied a non-local strain gradient theory
with power law variation of Young’s modulus along the length direction to find solutions for simply
supported nanobeams. Non-local Timoshenko nanobeam buckling has been numerically evaluated
in [44,45] under various boundary conditions (BCs). These research works did not take into account
functional gradation. The buckling of axially FG local Timoshenko beam structures has been studied
in [46,47]. Sahraee and Saidi [48] studied the influence of the Winkler–Pasternak foundation on
the buckling of FG local Timoshenko beams by taking into account functional grading along the
thickness direction. Deng [49] also investigated the buckling of a double FG Timoshenko beam on the
Winkler–Pasternak foundation.

Recently, structural theories capable of determining scale effects in micro materials have become
very popular because of their relevance numerous applications such as energy electronics, production,
medicine and biomaterials. For such applications extensive structural behavior analyses are required
and classical continuum mechanics is not suitable for these analyses because it cannot consider
micro-scale size effects. To solve this issue, several higher order non-local theories with additional
material constants have been established including non-local elasticity theory [35], micropolar
theory [50], surface elasticity [51], strain gradient theory [52], and modified couple stress theory [53].
Also, a novel and effective size-dependent elasticity theory, i.e., non-local strain gradient theory, which
takes into account the effects of various atomic parameters has been studied [54–57]. It is noteworthy
that nano/micro scaled hierarchical lattice structures and cellular nanostructures are examples of truss
systems known from structural analysis. Most of these research works are related to homogeneous
beams or through-thickness FG beams. With all in mind, studies for the size-dependent mechanical
behaviors of axially FG beams are in desperate need. Lack of unified size-dependance model, capable of
accounting for the non-local effects in micro/nano functionally graded material (FGM) beams, was seen
in the previous research.

In this work, we have established a mathematical model for the analysis of FG beams under
bending using non-classical (non-local) theory. Euler–Bernoulli micro/nano beam under bending
along with stress-strain relations in non-local theory was utilized for the rearrangement of classical
equations. Furthermore, different boundary conditions were rewritten based on non-local theory.
Finally, the differential motion equations obtained by using geometric variables and FG material
parameters have been made dimensionless. It was assumed that deformations were small and,
therefore, non-linear effects were not observed in governing equations. To investigate the effects
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of size-dependence and the axial distribution of material properties on the static bending, buckling
and vibration of micro/nano scaled beam structures, a mathematical method will be developed for
solving the size-dependent mechanical behaviors of axially FG beams based on non-local theory
with the emphasize on the natural frequency while non-local parameters and the power index are
being changed.

2. Modeling and Extraction of Governing Equation

2.1. Formulation of the Problem

Figure 1a,b shows a Euler–Bernoulli beam before and after bending at the presented coordinates.
Some assumptions employed in this work were the homogeneity of beam materials and lack of voids
and faults within materials and beams. The coordinate system should be as follows: x axis along
the length, z axis along the thickness (height), and y axis along the width of the beam. In these
theories, the load applied on the beam as well as beam geometry was considered such that (u1, u2, u3)

displacements, which are displacement elements along x, y and z directions, be only functions of
z and x coordinates and time. Then, u2, which is displacement along the y axis, was considered
to be 0 and governing equations were investigated on the x-z plane. Also, all motion equations of
the Euler–Bernoulli beam were presented by the principles of Hamilton and virtual work. Since,
the principle of virtual work is independent from structural model, all motion equations which are
expressed in terms of stress resultant along the cross-section of the beam were similar for both classical
and non-local theories [49,58].
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Figure 1. Schematic diagram of a Euler–Bernoulli beam before (a) and after (b) bending in
coordinate system.

First, stress resultants were defined as:

cM =

∫
A

zσxxdA

N =

∫
A
σxxdA

(1)

Their displacement fields were defined as:

u1 = u(x̂, t̂) + zψ(x̂, t̂), u2 = 0, u3 = ŵ (x̂, t̂) (2)

where (u, w) are axial and transversal displacements of the beam at point (x,0) in the middle plane
(z = 0) of the beam, respectively, Ŵ is beam deformation along z direction, and t̂ is time. Also, h, b and
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L are length, width and thickness, respectively, and ψ is the angles of the rotation of the cross-section of
the beam about the y axis, which are:

ψ (x̂, t̂) = −
∂ŵ
∂x̂

(3)

The only non-zero elements of strain in this equation are as follows:

εxx =
∂u
∂x̂
− z

∂2ŵ
∂x̂2 ≡ ε

0
xx + zκ, ε0

xx =
∂u
∂x̂

, κ = −
∂2ŵ
∂x̂2 (4)

where ε0
xx and κ are tensile and bending strains, respectively.

In the element shown in Figure 2, we only needed to write Newtonian equilibrium along the
transverse direction of the beam for the length and width of dx. Forces and moments exerted on this
element are as shown below.
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Figure 2. Beam element and forces and moments applied on it.

By calculating forces along z direction and moments along the y direction and coupling the two
equations, transversal motion equation is obtained as:

∂2M
∂x̂2 + q̂ +

∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
= m0

∂2ŵ
∂t̂2

−m2
∂4ŵ
∂x̂2∂t̂2

(5)

where (m0, m1, m2) are the mass(rotary) inertias named (m0, m1, m2) =
∫

A ρ(z)
(
1, z, z2

)
.

It is noteworthy that, if the principle of virtual motion was applied, the above equation would be
obtained. In this principle, the following relations would be obtained:

0 =

∫ T

0

∫ L

0
[m0

(
∂u
∂t̂
∂δu
∂t̂

+
∂ŵ
∂t̂

∂δ ŵ
∂t̂

)
+ m2

∂2ŵ
∂x̂∂t̂

∂2δŵ
∂x̂∂t̂

+ Nδε0
xx −Mδκ+ fδu + q̂ δŵ

+N̂
∂ŵ
∂x̂

∂δŵ
∂x̂

]dx̂dt̂

(6)

where f (x̂, t̂) and q(x̂, t̂) are axial and lateral distributed forces (force per unit length), respectively,

mo is mass per unit length of beam, m2 is cross-sectional inertia moment in unit length, and N̂ is axial
force exerted on the beam and its sign is assumed to be in the form of positive tensile.

Based on Euler–Lagrange equations obtained in the range of 0 < x < L, we had:

∂N
∂x̂

+ f = m0
∂2u
∂t̂2

(7)

∂2M
∂x̂2 + q̂ +

∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
= m0

∂2ŵ
∂t̂2

−m2
∂4ŵ
∂x̂2∂t̂2

(8)
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As can be seen, Equation (8) is similar to Equation (5) but is obtained by the principle of
displacement. Unlike, linear algebraic equations between stress resultants and strains in local theory,
non-local theory gives differential equations between stress resultants and strains. In the following,
the equations are presented based on the assumption that non-local behavior along thickness direction
was negligible.

2.2. Governing Differential Equations for Functionally Graded (FG) Beam

In this section, the relations of non-local theory as well as the conditions and properties of a target
material (FGM) have been considered. Non-local governing equation was applied, and stress resultant
was obtained in terms of strain element.

σxx − µ
∂2σxx

∂x̂2 = E(z)εxx (9)

where E is elastic modulus and µ = (e0a)2 is the non-local parameter, e0 is a constant appropriate to
each material, a is the internal characteristic length. The non-local parameter depends on the boundary
conditions, chirality, mode shapes, number of walls, and type of motion [11]. So far, there is no rigorous
study made on estimating the value of the non-local parameter. It is suggested that the value of non-local
parameter can be determined by conducting a comparison of dispersion curves from the non-local
continuum mechanics and molecular dynamics simulation [17,35–39]. In general, a conservative
estimate of the non-local parameter is e0a < 2.0 nm for a single wall carbon nanotube [27,30]. Later,
some characteristics are obtained from the values used in functional graded beam. The following
integrals were calculated separately from the two sides of the Equation (9). To drive force and moment
equilibrium equations we need to take the below integrals from both side of Equation (9).∫

A
dA,

∫
A

zdA (10)

In the above equation, the x axis was considered to pass through the geometric center of beam
cross-section along its length. By applying

∫
A dA to Equation (9) we have:

∫
A
σxx dA− µ

∫
A

∂2σxx

∂x̂2 dA =

∫
A

E(z)εxxdA

N − µ
∂2N
∂x̂2 =

∫
A

∂u
∂x̂

E(z)dA−
∫
A

∂2w
∂x̂2 zE(z)dA

(11)

and according to the definition of neutral axis and since coordinate axis (x) is always on neutral axis:∫
A

E(z)zdA = 0 (12)

Therefore, the equation of axial strain force was obtained as:

N − µ
∂2N
∂x2 = E(z)Aε0

xx (13)
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Applying
∫

A zdA on Equation (9) gave:

∫
A

zσxx dA− µ
∫

A
z
∂2σxx

∂x̂2 dA =

∫
A

E(z)z εxxdA

M− µ
∂2M
∂x̂2 =

∫
A

∂u
∂x̂

E(z)zbdz−
∫
A

∂2w
∂x̂2 z2E(z)bdz

(14)

where the equations of stress resultant of Euler-Bernoulli beam obtained by solving the differential
equations of non-local theory were:

M− µ
∂2M
∂x̂2 = Mt = −E I

d2W
dx2 = Cκ, C =

∫
A

z2E(z)dA = (EI)eq (15)

In the above equation, I is second moment of area about y axis. By coupling Equations (7) and (13),
axial force motion equations were obtained as:

N = (EA)eq
∂u
∂x̂

+ µ

(
m0

∂3u
∂x̂∂t̂2

−
∂ f
∂x̂

)
(EA)eq =

∫
A

E(z)dA

(16)

Also, by combining Equations (7) and (16), the axial motion equation was obtained as:

∂
∂x̂

(
(EA)eq

∂u
∂x̂

)
+ f − µ

∂2 f
∂x̂2 = m0

(
∂2u
∂t̂2
− µ

∂4u
∂x̂2∂t̂2

)
(17)

It was also assumed that there is no stimulation along the length of the beam, i.e., the external
force exerted on the beam f along the length of the beam was zero. Therefore, u = 0 was the obvious
solution of the problem. Hence, in the remainder of the paper, only transversal displacement has
been considered.

The second derivative of M from Equation (8) was introduced into Equation (14) and the
moment-bending deformation relation was obtained as:

M− µ
(
m0
∂2ŵ
∂t̂2

−m2
∂4ŵ
∂x̂2∂t̂2

−
∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
− q̂

)
= Cκ (18)

By combining Equations (8) and (18), overall motion equation for non-local Euler-Bernoulli beam
was obtained as:

µ
∂2

∂x̂2

(
m0
∂2ŵ
∂t̂2
−m2

∂4ŵ
∂x̂2∂t̂2

−
∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
− q̂

)
−C

∂4ŵ
∂x̂4

= m0
∂2ŵ
∂t̂2
−m2

∂4ŵ
∂x̂2∂t̂2

− q̂−
∂
∂x̂

(
N̂
∂ŵ
∂x̂

) (19)

When µ = 0, motion equations of Euler–Bernoulli beam under classical (local) conditions were
obtained. Moving forward, the property of functional graded beam is being employed into the
properties of the beam. According to Figure 3, the values of z, z̃ and z̃c are the distance from neutral
axis, distance from beam bottom, and the distance of neutral axis from beam bottom, respectively,
where

z = z̃− z̃c (20)
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As mentioned above, the functional beam power model was used and metal and ceramic were
assumed to be aluminum and aluminum oxide, respectively, and the following equations were obtained:

ρ(̃z) = ρc +

(
z̃
h

)n

(ρm − ρc) (21)

E(̃z) = Ec +

(
z̃
h

)n

(Em − Ec) (22)

m0 =

∫
A
ρ(̃z)dA =

∫ h

0

[
ρc1 +

(
z̃
h

)n

(ρm − ρc)

]
bd̃z = bhρ̃0(n) (23)

I = m2 =
∫

A ρ(̃z)z
2dA =

∫
A ρ(̃z)(̃z− z̃c)

2dA =
∫ h

0 (̃z− z̃c)
2
[
ρc +

(
z̃
h

)n
(ρm − ρc)

]
bd̃z

= bh3ρ̃2(n)
(24)

C = (EI)eq =
∫

A E(̃z)z2dA =
∫

A E(̃z)(̃z− z̃c)
2dA =

∫ h
0 (̃z− z̃c)

2
[
Ec +

(
z̃
h

)n
(Em − Ec)

]
bd̃z

= bh3Ẽ(n)
(25)

where

Ẽ(n) =
Ec

3
+

(Em − Ec)

n + 3
+

(
Ec +

Em − Ec

n + 1

) Ec
2 + Em−Ec

n+2

Ec +
Em−Ec

n+1


2

−

(
Ec + 2

Em − Ec

n + 2

) Ec
2 + Em−Ec

n+2

Ec +
Em−Ec

n+1

, (26)

ρ̃0(n) = ρc +
ρm − ρc

n + 1
(27)

ρ̃2(n) =
ρc
3 +

(ρm−ρc)
n+3 +

(
ρc +

ρm−ρc
n+1

)( Ec
2 + Em−Ec

n+2

Ec+
Em−Ec

n+1

)2

−

(
ρc + 2ρm−ρc

n+2

) Ec
2 + Em−Ec

n+2

Ec+
Em−Ec

n+1
. (28)

In order to determine the position of the beam neutral axis z̃c, equilibrium equation along x can be
considered as (with reference to Equation (12)): (z = z̃− z̃c)∫

A

E(z)zdA =

∫
A

E(̃z)zdA =

∫
A

E(̃z)(̃z− z̃c)bd̃z = 0

z̃c =

∫ h
0 E(̃z)̃zbd̃z∫ h
0 E(̃z)bd̃z

= h
Ec
2 + Em−Ec

n+2

Ec +
Em−Ec

n+1

(29)

Coefficients c and m corresponded to ceramic and metal, respectively. Also, the values summarized
in Table 1 were considered for the beam. In the case studies, it is assumed that the metal and ceramic
phases of the micro-beams are made of aluminum and alumina (aluminum oxide), respectively.
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Table 1. Properties of ceramic and metal used in functional graded materials.

Materials E (GPA) ρ (kg/m3)

Metal (Aluminum) 70 3960
Ceramic (Aluminum oxide) 390 2700

2.3. Dimensionless Governing Equations in Different Boundary Conditions

To better investigate the effect of non-locality in this work, motion Equation (18) was made
dimensionless by introducing the following parameters:

ατ2 ∂6w
∂x4∂t2

−

(
α+ τ2

) ∂4w
∂x2∂t2 +

(
β+ Nτ2

)∂4w
∂x4
−N

∂2w
∂x2 +

∂2w
∂t2 + τ2 ∂

2q
∂x2 − q = 0 (30)

where

x =
x̂
l

, w =
ŵ
l

, t =
t̂
T

, N =
N̂

Ñ
, q =

q̂
q̃

(31)

T = l2
√

m0

Cc
, Ñ =

Cc

l2
, q̃ =

Cc

l3
, τ2 =

µ

l2
, α =

m2

m0l2
, β =

C
Cc

where C and Cc are (EI)eq for functional beam and ceramic, respectively, α and β are parameters which
remain in equations after becoming dimensionless. They will hold identity of functional graded
materials and, and τ has the nature of non-local theory.

Since the principle of Hamilton is independent from the presented structural model, stress
resultants were introduced in terms of generalized coordinates. Therefore, the presentation of the
principle of Hamilton was also based on this coordinate and was the same for both classical and
non-local theories.

Using the principle of Hamilton in the Euler–Bernoulli beam we had:

δ
∫ t2

t1
(T −U + W)dt = 0

0 =
∫ T

0

∫ L
0

{
m0

(
∂ŵ
∂t̂
∂δŵ
∂t̂

)
+ m2

∂2ŵ
∂x̂∂t̂

∂2δŵ
∂x̂∂t̂ + q̂δŵ− (EI)eq

∂2ŵ
∂x̂2

∂2δŵ
∂x̂2 + N̂ δŵ

∂x̂
∂δŵ
∂t̂

+µ
[
∂
∂x̂

(
N̂ δŵ
∂x̂

)
− q̂ + m0

∂2ŵ
∂t̂2 −m2

∂4ŵ
∂x̂2∂t̂2

]
∂2δŵ
∂x̂2

}
dx̂dt̂

+
∫ T

0

[
Vδŵ−M∂δŵ

∂x̂

] L
0

dt̂

(32)

where V is equivalent shear force. The equations extracted from variational terms were verified since
they were similar to those extracted from Euler–Lagrange equations. Boundary conditions at x = 0, L
were also obtained.

V = m2
∂3ŵ
∂x̂ ∂t̂2

+ N̂
δŵ
∂x̂
−
∂
∂x̂

(
(EI)eq

∂2ŵ
∂x̂2

)
+µ

∂
∂x̂

[
m0
∂2ŵ
∂t̂2
−m2

∂4ŵ
∂x̂2∂t̂2

−
∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
− q̂

]

M = −(EI)eq
∂2ŵ
∂x̂2 + µ

[
m0
∂2ŵ
∂t̂2
−m2

∂4ŵ
∂x̂2∂t̂2

−
∂
∂x̂

(
N̂
∂ŵ
∂x̂

)
− q̂

] (33)

If the obtained V and M were made dimensionless, we had:

V(x) = −
Cc

l2
(((
α+ τ2

)
ω2
−N

)
W′(x) +

(
β− τ2

(
αω2
−N

))
W′′′ (x) + τ2q′

)
M(x) = −

Cc

l

((
β− τ2

(
αω2
−N

))
W′′ (x) + τ2ω2W(x) + τ2q

) (34)

where ’, ”, and ”’ refer to first and second and third derivative of x, respectively.
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3. Static Analysis

Due to the wide applications and popularity of beams with one free end (cantilever), especially in
actuators, this boundary condition has been evaluated in this section. Since we know that under static
analysis conditions there is no time dependency, the governing Equation (30) was simplified as:

(
β+ Nτ2

)
W(4) + (−N)W′′ + τ2 ∂

2q
∂x2 − q = 0 (35)

Under this condition, since time term is eliminated, using Equation (33) boundary conditions for
cantilever beam is changed and new accurate conditions for the end is considered as:

V(x) = −
Cc

l2
(
(−N)W′(x) +

(
β+ τ2N

)
W′′′ (x) + τ2q′

)
(36)

M(x) = −
Cc

l

((
β+ τ2N

)
W′′ (x) + τ2q

)
To solve the static governing equation, first transversal load q was applied in two different forms

of point and uniform loads onto functional beam and then the problem was solved.For point loading
fixed at the beam end by assuming q = 0, q(1) = P0, N = 0, equation and boundary conditions were
obtained as:

(β)W(4) = 0, W(0) = W′(0) = 0, V(1) = P0, M(1) = 0,

V(1) = (β)W′′′ (1) = P0
(37)

M(1) = W′′ (1) = 0 (38)

W(x) =
P0

6β

(
3x2
− x3

)
(39)

where the obtained equation gave similar results to local theory and no effect of non-local parameter
was observed. When the location of point load was assumed to be variable as x = Ω, 0 < Ω < 1,
the solution was:

W(x) =
P0

6β

{
x2(3Ω − x) x < Ω
Ω2(3x−Ω) x > Ω

(40)

which shows that even under these conditions, non-local theory did not have any effects. Therefore,
in cantilever beams, point loads gave similar results in classical and non-classical theories regardless of
their location.

It is obvious that, since β varies between 0 and 1, its effect is evident in the increase and decrease
of beam deflection. Since here we had 0.1781 < β < 1, its main effect was in the increase of beam rise.
For uniform load, by assuming q = p0, N = 0, equation and boundary conditions were obtained as:

(β)W(4) + τ2 ∂
2q
∂x2 − q = 0 (41)

W(0) = W′(0) = 0, M(1) = 0, V(1) = 0 (42)

W(x) =
p0

24β
x2

(
x2
− 4x + 6

(
1− 2τ2

))
(43)

Under these conditions, unlike the previous one in which concentrated force was applied and
only the effects of functional materials were considered significant, the effect of non-local theory was
also observed. Non-local continuum field theory manages the physics of material bodies in which
behavior at a material point is affected by the state of all points of the body

As was seen in Figure 4, increasing of non-local parameter lessens the deflection of beam tip and,
compared to classical theory, deflection is at least halved (infinity power index). It can be seen in
the diagram that at τ = 0.5 beam tip deflection becomes 0 which was also obtained by Paddison [7].
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As mentioned above, at τ > 0.5 (τ = 0.5 is zero reference for beam tip deflection), the direction of beam
deflection is inversed which could be problematic; therefore, it should be noted that if, for example,
positive direction of deflection is under investigation, we can use values of up to τ < 0.5. Therefore,
the effect of the variation of the non-local parameter was obviously observed.
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Regarding the effect of FG materials, it was also observed that by increasing the power index from
0, i.e., pure metal, to infinity, i.e., ceramic, beam tip deflection was decreased not only before but also
after τ = 0.5. Therefore, it was observed that if high deflections were required in designing actuators,
power indices should be very close to 0 and if low deflection and actuation were required, values
such as 1, 2, 3, etc. should be addressed so that the material could retain its functional properties. If δ
was the highest deformation (x = 1) in non-local theory and δ0 was the highest deformation (x = 1) in
classical theory, their ratios were:

δ

δ0
= 1− 4τ2, τ =

e0a
L

(44)

If it as assumed that non-local error was 1% and by considering the approximate value of 0.4 for
e0, the following condition have to be created [7]:

L
a
> 8 (45)

Also, we know that microelectromechanical cantilever actuators were almost 100–500 µm long
(1× 10−4 m < L < 5× 10−4 m) and atomic distances or the distance between adjacent crystals were in
the range of angstroms (1 × 10−10 m < a < 1 × 10−9 m). Therefore, non-local theory could not have
a significant effect on micro-electromechanical system (MEMS). The recommended systems or devices
in nanotechnology had dimensions in the scale of (1× 10−9 m < L < 1× 10−8 m) but it is clear that the
effect of non-local theory becomes significant at nanoscale. Therefore, we investigated the problem in
this work for a beam L = 20 nm in length to make the effects more significant.

4. Buckling Analysis

As known, in thin and long beams and columns, like Euler–Bernoulli beams, the importance
of buckling failure generally overrides over that of yield failure. Thus, in this section, the values
of critical buckling for different boundary conditions have been investigated. For the calculation of
critical buckling load with Equation (30), q and all-time derivatives have to be considered to be zero,
then we have: (

β−Nτ2
)
W(4) + NW′′ = 0 (46)
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By solving this normal differential equation, we obtained particular and general solutions as:

W = C1 + C2x + C3coskx + C4sinkx (47)

in which, by applying different boundary conditions, unknown coefficients (C1, C2, C3 and C4) were
obtained, and k is obtained by solving the characteristic equation and, therefore, critical force was
calculated, also Table 2 gives different values of k per its specific BCs.

k2 =
N

β−Nτ2 (48)

Ncr =
k2β

(1 + k2τ2)
(49)

Table 2. Different values of k for different boundary conditions (BCs).

BCs k

Simply supported-Simply supported (S-S) π

Simply supported-Clamped (S-C) 4.4934

Clamped-Clamped (C-C) 6.2832

Figure 5 shows the effect of non-local parameter on critical buckling load for different power values
in a simply-supported ends beam. It was seen that non-local parameter significantly decreased buckling
in beams regardless of their material. For other boundary conditions also, the values were similarly
decreased. By increasing power index toward infinity, buckling load was also increased; in other words,
by increasing the volume fraction of metal, buckling load becomes lower. Figure 6 shows the effect of
the non-local parameter on critical load for different boundary conditions for n = 0.5. As expected,
critical load was s− s < s− cl < cl− cl. Also, it was seen from the figure that at τ = 0, the values were
increased at certain ratio of 2 which is the ratio found by Fernand Bear et al. [59] for classical conditions.
At high values of non-local parameter, buckling loads for all BCs become closer together because n was
constant and the value of k2 was very higher than 1 in the denominator; therefore, at high values of τ,
buckling load tends toward β

τ2 which was independent of boundary condition.
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5. Dynamic Analysis

In this section, the problem has been solved considering transversal force on the beam. The motion
equation of a beam under transversal load are as follows. Load P at velocity v0 was moved on the
beam. If transversal force was assumed as a moving load, as shown in Figure 7:
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Using the method of modes summation (modal analysis), the assumed solution of Equation (30)
was a linear combination of normal modes of the beam as:

w(x, t) =
∞∑

i=1

ηi(t)φi(x) (50)

where φi(x) is normal mode which was obtained by solving free vibrations under different boundary
conditions and ηi(t) is the generalized coordinates of modal contribution coefficient. By substituting
Equation (46) into Equation (30) we obtained:

ατ2 ..
ηiφi

′′′′

−

(
α+ τ2

) ..
ηiφi

′′ + ηi
(
β+ Nτ2

)
φi
′′′′

−Nηiφi
′′ +

..
ηiφi + τ2 ∂

2q
∂x2 − q = 0 (51)

in which force was applied to the beam as a delta function; q = Pδ(x− v0t). By substituting force into
Equation (47) we had:

ατ2 ..
ηiφi

′′′′

−

(
α+ τ2

) ..
ηiφi

′′ + ηi
(
β+ Nτ2

)
φi
′′′′

−Nηiφi
′′ +

..
ηiφi + τ2P(δ(x− v0t))′′

−Pδ(x− v0t) = 0
(52)

Then, based on the method of summation of modes, the two sides of above equation were
multiplied by φi and integrated from 0 to 1 which gave:

ατ2 ..
ηi

∫ 1

0
φi
′′′′

φidx−
(
α+ τ2

) ..
ηi

∫ 1

0
φi
′′φidx + ηi

(
β+ Nτ2

) ∫ 1

0
φi
′′′′

φidx−Nηi

∫ 1

0
φi
′′φidx

+
..
ηi

∫ 1

0
φ2

i dx = P
∫ 1

0
φiδ(x− v0t)dx− τ2P

∫ 1

0
φi(δ(x− v0t))′′dx

(53)
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Using perpendicular modes, which was considered for the first three modes in this work,
the following differential equation was obtained in terms of η.

(ατ2A + C− B
(
α+ τ2

)
)

..
ηi(t) −

(
NB−

(
β+ Nτ2

)
A
)
ηi(t) = Qi(t) (54)

A =

∫ 1

0
φi
′′′′

φidx, B =

∫ 1

0
φi
′′φidx, C =

∫ 1

0
φ2

i dx

Qi(t) =
∫ 1

0
φiq(x, t)dx = P

(
φi(v0t) − τ2φi

′′ (v0t)
) (55)

Using Equations (50) and (51) we had:

..
ηi(t) −

(NB−(β+Nτ2)A)
(ατ2A+C−B(α+τ2))

ηi(t)

= P
(ατ2A+C−B(α+τ2))

[A1
(
1− τ2s2

1

)
coshs1vt + A2

(
1− τ2s2

1

)
sinhs1vt

+B1
(
1 + τ2s2

2

)
coss2vt + B2

(
1 + τ2s2

2

)
sins2vt]

(56)

The solution of the equation was:

ηi =
PA1

(
1− τ2s2

1

)
J + s2

1v2
coshs1vt +

PA2
(
1− τ2s2

1

)
J + s2

1v2
sinhs1vt +

PB1
(
1 + τ2s2

2

)
J − s2

2v2
coss2vt

+
PB2

(
1 + τ2s2

2

)
J − s2

2v2
sins2vt + Dsin(ωt +∅)

(57)

where

J =

((
β+ Nτ2

)
A−NB

)
(ατ2A + C− B(α+ τ2))

s1 =

√
−b +

√
b2
− 4ac

2a
, s2 =

√
b +

√
b2
− 4ac

2a

a =
(
β+

(
N−αω2

)
τ2

)
, b =

((
α+ τ2

)
ω2
−N

)
, c = −ω2

(58)

in which the application of primary conditions of beam gave:

ηi(0) =
PA1

(
1− τ2s2

1

)
J + s2

1v2
+

PB1
(
1 + τ2s2

2

)
J − s2

2v2
+ Dsin(∅) = 0

η′i(0) =
PA2s1v

(
1− τ2s2

1

)
J + s2

1v2
+

PB2s2v
(
1 + τ2s2

2

)
J − s2

2v2
+ Dω cos(∅) = 0

(59)

By solving the two above equations, the two unknowns ∅ and D were obtained.
Figure 8 shows the beam deformation at applied load location in Cl-Cl and cantilever beams

for the three first modes with the variation of the power index under a constant non-local parameter.
As seen in the figure, increase of functional material coefficient, diagram peaks which were obtained at
critical velocity are shifted forward. Peaks are points where critical velocity (resonance frequency)
occurred and since there is no damping in the system, their values tend toward infinite. At high
values of non-local parameters, the peaks become close to each other for any power index, velocities
(resonance frequency) become smaller, and the appropriate (safe) range for adopting velocity was
increased. Therefore, coefficient n, as a design parameter, should be adopted such that the velocity of
applied load be at reasonable magnitude order (generally 10%) from critical velocity. It is noteworthy
that we considered only three modes and too many other modes existed. The assumption of three
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modes is almost correct although other modes do not have significant effects. In Figure 8, it can be
seen that at velocity zero, which was static condition, an increase of FG coefficient of the material
increases its stiffness resulting in lower deformation. These results were also discussed in static section.
In Figure 9, a cl-cl beam with constant power index was used to evaluate the effect of the non-local
parameter on velocity and deformation and it was found that the increase of the non-local parameter
reduces the velocity value and unsafe range (peaks became closer). Since the stiffness of beam was
decreased (decrease of frequency) deformation increased under both dynamic and static conditions.
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In Figure 10, a cantilever beam was used to demonstrate beam tip deformation versus the velocity

of applied load for the variation of the power index of functional material under constant non-local
parameter value. Like cl-cl beams, these diagrams also provided almost similar results, but the
convergence of critical velocities was slower. Here, the critical velocities of second and third modes
converged and then they got closer to the velocity of the first mode. Figure 11 shows the behavior
of FG material with a certain power index for different non-local parameters. Unlike Figure 10 for
cl-cl beams, in this diagram, at velocity 0 (static condition) increase of non-local effect decreased beam
deformation, although this increase was not significant. It was seen from the figures that non-local
effect was negligible in the first mode. Like cl-cl beams, dynamic deformations in this figure were
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increased by the increase of this effect and the differences observed in this figure compared to Figure 9
were due to the increase of the first frequency in the cantilever beam.
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6. Conclusions 

Here, we have established the boundary conditions and governing equations of FG Euler–
Bernoulli beams using the non-local theory of elasticity. Then, free vibrations were studied and the 
effects of the non-local parameter, power index and axial load on the natural frequencies of s-s 
beams were assessed. The results obtained indicated that the non-local parameter decreased the 
frequency while the power index increased it. However, the inverse results were obtained for the 
cantilever beam, particularly for the first natural frequency. Axial load was also observed to 
increase the frequency value. Static and buckling analysis were done to show how micro/nano 
beams behave under two different types of load and it was shown that non-local theory is more 
capable of showing its influence in nano scale than micro. Dynamic analysis was examined under a 
moving load for the first three mode shapes. Power index was shown to be a strong tool for 
determining the coefficient of the critical velocity and oscillation domain. The location of these 
critical velocities (peaks) helped us in the design of the dynamic load. 
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6. Conclusions

Here, we have established the boundary conditions and governing equations of FG Euler–Bernoulli
beams using the non-local theory of elasticity. Then, free vibrations were studied and the effects of
the non-local parameter, power index and axial load on the natural frequencies of s-s beams were
assessed. The results obtained indicated that the non-local parameter decreased the frequency while
the power index increased it. However, the inverse results were obtained for the cantilever beam,
particularly for the first natural frequency. Axial load was also observed to increase the frequency
value. Static and buckling analysis were done to show how micro/nano beams behave under two
different types of load and it was shown that non-local theory is more capable of showing its influence
in nano scale than micro. Dynamic analysis was examined under a moving load for the first three
mode shapes. Power index was shown to be a strong tool for determining the coefficient of the critical
velocity and oscillation domain. The location of these critical velocities (peaks) helped us in the design
of the dynamic load.
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