
vibration

Article

Experimental Characterization of Friction in a
Negative Stiffness Nonlinear Oscillator

Dario Anastasio and Stefano Marchesiello *

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy; dario.anastasio@polito.it
* Correspondence: stefano.marchesiello@polito.it

Received: 15 May 2020; Accepted: 3 June 2020; Published: 5 June 2020
����������
�������

Abstract: Nonlinear dissipative phenomena are common features of many dynamical systems
and engineering applications, and their experimental characterization has always been a challenge
among the research community. Within the wide range of nonlinear damping mechanisms, friction is
surely one of the most common, and with a high impact on the dynamical behavior of structures.
In this paper, the nonlinear identification of friction in a negative stiffness oscillator is pursued.
The structure exhibits a strong nonlinear behavior, mainly due to its polynomial elastic restoring force
with a negative stiffness region. This leads to an asymmetric double-well potential with two stable
equilibrium positions, and the possibility of switching between them in a chaotic way. Friction plays a
crucial role in this context, as it derives from the continuous sliding between the central guide and the
moving mass. The system is driven through harmonic tests with several input amplitudes, in order to
estimate the variations in the energy dissipated per cycle. The identification of the frictional behavior
is then pursed by minimizing the errors between the experimental measurements and the model
predictions, using the harmonic balance method in conjunction with a continuation technique on the
forcing amplitudes.
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1. Introduction

Friction is a complex nonlinear phenomenon highly present in mechanical systems. It results from
the interaction between adjacent surfaces and is dependent on their topography and materials, and
on the presence of lubrication and relative motion [1]. Studies on friction have been carried out for
more than 500 years [2], and a more detailed explanation about modeling techniques can be found in
several works in the literature [3–5]. A major classification of friction is usually done by separating
the “pre-sliding” from the “sliding” (or “gross-sliding”) behavior. The first can be associated with
the elastic and plastic deformations at the asperity levels of the adjacent surfaces, and it is known to
be mostly dependent on their relative displacement. The friction force in the pre-sliding regime is a
hysteretic function of the position with a non-local memory [1,4]. Instead, the sliding regime is largely
due to the shearing resistance of the asperities, and mainly dependent on the velocity. The pioneering
friction model of Coulomb [6] is indeed the most known example of sliding friction.

The experimental identification of friction has always been a difficult task, especially when real-life
mechanical structures are involved. This is indeed due to the intrinsic nonlinear nature of the friction
phenomenon, which may lead to limit cycles, tracking errors, stick–slip motion, hysteresis and other
typical features of nonlinear systems such as natural frequency shifts and jumps. Many nonlinear
identification techniques have been developed by the research community in the last decades, and two
extensive literature reviews can be found in [7,8]. Nevertheless, different methods are suitable for
the different classes of nonlinearities and kind of excitations, and few of them have been tested with
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frictional and/or hysteresis nonlinearities. In [1], several identification techniques of pre-sliding and
sliding friction were compared, ranging from white-box to black-box models. The identifications were
performed directly on the friction force, which was measured in a controlled laboratory setup with a
tribometer. In [9], the same experimental setup was adopted and the identification was performed
considering the LuGre [10] and the Maxwell-slip [11] friction models in conjunction with nonlinear
regression techniques. The LuGre model was again adopted in [12] to identify the frictional behavior
in a torque motor control system, using an evolutionary algorithm to minimize the residuals between
predictions and measurements with constant velocity experiments. A different approach was adopted
in [13], where a general hysteresis model was identified via the nonlinear state–space modeling of
a single-degree-of-freedom system under multisine excitation. Ground vibrations sine sweep tests
were conducted in [14], to estimate the shape of the friction force at the joints of the wing-payload
substructure of an F-16 aircraft using the restoring force surface (RFS) [15] and wavelet transform
methods. Indeed, friction phenomena associated with joints are known to be a typical source of
nonlinearity in mechanical systems [16], and this represents a critical issue in several engineering
applications, such as bladed disks [17]. In such cases, friction is usually modeled with node-to-node
contact elements, where Coulomb’s friction law is used to model the local slip conditions of the joint
interfaces [18]. On the experimental side, the nonlinear dynamical behavior of contact interfaces has
been widely observed, for instance in [19–21].

In this paper, the data-driven nonlinear modeling of the frictional behavior of a negative stiffness
oscillator is performed. The oscillator is part of a device designed to improve the current collection
quality in railway overhead contact lines, attempting to alter their damping distribution and reduce the
wave propagation, known to be a critical phenomenon in such structures [22,23]. It is characterized by
a strong nonlinear behavior mainly due to its double-well characteristics [24], and it exhibits two stable
equilibrium positions plus an unstable one. The oscillations can either be bounded around one stable
point (“in-well”) or include all the three positions (“cross-well”). In both cases, periodic oscillations
can evolve to steady in-well or cross-well chaotic motions under external periodic excitations [25,26].
The bi-stable nature of the device is translated to a polynomial-kind restoring force with a negative
slope around the origin. This has been experimentally identified in a previous work [27] using
the nonlinear subspace identification method (NSI) [28] with cross-well oscillations under random
excitation. However, the method struggled when trying to infer a nonlinear dissipative model.

The identification of the friction force of the device turns out to be a particularly challenging task,
as it is not the only and dominant source of nonlinearity. The device is here driven through several
harmonic excitations with increasing amplitudes, and the friction force is identified by minimizing the
residuals between the model predictions and experimental measurements of the energy dissipated per
cycle over the considered input amplitude range. The model response is computed using the harmonic
balance method (HBM) [29], therefore searching for periodic responses approximated by Fourier series.
HBM is usually adopted in conjunction with a continuation technique [30,31] to study the evolution of
the periodic solutions with respect to the excitation frequency and to build the so-called “nonlinear
frequency response curves”. The same idea is used in this paper, but a novel procedure is implemented
adopting the continuation technique with respect to the excitation amplitude. This allows to estimate
the “nonlinear amplitude response curves”, and therefore the dissipated energy per cycle. Given the
interest in obtaining a physically based model, a white-box approach is pursued in this work. A proper
frictional model should then be considered, which is first inferred using the RFS method together
with physical insights about the device functionality. A genetic algorithm [32] is eventually used to
optimize the model parameters based on the experimental observations.

Results show a good confidence in the identified parameters and provide a reliable model able to
catch the strong nonlinear dynamics of the structure under test. This confirms the effectiveness of the
presented methodology, which can be applied to a wide class of nonlinear systems.
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2. A Negative Stiffness Oscillator

The device consists of a U-shaped frame connected through rods to a central moving mass.
The frame keeps the rods under compression during their movement, achieving a bi-stable mechanism.
A schematic representation of the device is depicted in Figure 1.
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Figure 1. Schematic representation of the negative stiffness oscillator.

The lower surface of the frame is attached to a shaking table, so as to impose a displacement
b(t) to the structure. An accelerometer is located on the shaking table to measure the acceleration of
the base

..
b(t). The displacement b(t) is then obtained by integrating twice its measured acceleration.

It is also assumed that the inertia of the moving parts can be concentrated into one central point with
a mass of m = 0.26 kg, comprising the mass of the central bushing and the equivalent inertia of the
rods. The vertical movement of this point is described by the coordinate y(t) and it is measured by a
laser vibrometer. The zero position of y(t) corresponds to the horizontal configuration of the rods.
The reader can refer to [27] for more details about the device.

It is assumed that the system can be modeled as a single-degree-of-freedom system in the variable
z(t) = y(t) − b(t), leading to an equation of motion of the kind

m
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is the restoring surface, the sum of the (elastic) restoring forceK(z) and the damping force
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. The latter is supposed to be a function of both displacement z and velocity

.
z. The restoring

force of the considered system can be expressed as a polynomial expansion of degree three:

K(z) = k3z3 + k2z2
− k1z + k0. (2)

Therefore, the undamped equation of motion takes the form of a double-well asymmetric Duffing
oscillator [26], and its potential can be defined as

U(z) =
1
4

k3z4 +
1
3

k2z3
−

1
2

k1z2 + k0z. (3)

A qualitative representation of the potential is shown in Figure 2, where its double-well nature
can be clearly noticed. The potential is not symmetric because of the gravitational contribution and the
asymmetry of the frame. Further, the three equilibrium positions are depicted, obtained by setting
K(z∗) = 0. Two out of three positions represent a stable equilibrium, namely z∗

−
and z∗+, while the

central position z∗0 is an unstable equilibrium point. The oscillations of the moving point are said
to be “in-well” when the motion is bounded around one of the two stable equilibrium positions z∗

±
.

The associated linear natural frequency ω± can be computed by
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) being the second derivative ofU(z) computed in z∗

−
or z∗+.
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Two photos of the device in correspondence with the two stable equilibrium positions are depicted
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Figure 3. Photos of the experimental setup. (a) Negative equilibrium position z∗
−

; (b) positive
equilibrium position z∗+.

3. Experimental Nonlinear Characterization and Equation of Motion

Both random and harmonic tests have been performed to identify the features of the device,
and all the tests have been conducted with a sampling frequency of 512 Hz. In particular, random tests
have been used in a prior work to identify the restoring force of the device, whose results are briefly
summarized in the following. Harmonic tests are instead used in this work to identify the damping
force. The excitation force is expressed in this case in terms of excitation amplitude f0 and frequency ν.

3.1. Identification of the Restoring Force

The values of the coefficients of the restoring force have been experimentally identified in [27]
using the nonlinear subspace identification (NSI) algorithm with cross-well measurements under
random excitation. A portion of the time history of the measured displacement z(t) is reported in
Figure 4, while the identified values are reported in Table 1.
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Figure 4. Measured cross-well oscillations under random excitation in [27].

Table 1. Previously identified coefficients of the restoring force.

k3 (N/m3) k2 (N/m2) k1 (N/m) k0 (N)

7.35 · 105 1.56 · 103 550 2.4

According to Equation (4), the linear natural frequencies of the small oscillations around the two
stable equilibrium positions are ω− = 11.6 · 2π rad/s and ω+ = 8.6 · 2π rad/s.

The RFS method can be applied to the time history of Figure 4 to visualize the experimental
restoring and damping forces, and the results are depicted in Figure 5a. In particular, if small velocities
are taken into account, such that

∣∣∣ .
z
∣∣∣ < εs, the obtained slice of the restoring surface approximates the

restoring forceK . Figure 5b shows the experimental restoring force compared to the identified one of
Table 1, which nicely fits the experimental observations. Instead, when small displacements around
the equilibrium positions are considered, such that |z− z∗| < εd, an approximation of the damping force
D should be retrieved. This is reported in Figure 5c, but the dispersion of the points appears to be too
high to correctly deduce any damping model.
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Figure 5. Experimental restoring surface from [27] with cross-well random excitation in (a); experimental
restoring force (blue dots, εs = 0.1% and identified restoring force (red line) in (b); experimental
damping forces around z∗

−
(green dots, εd = 0.1%) and z∗+ (yellow dots, εd = 0.1%) in (c).
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3.2. Characterization of the Friction Force

Given the difficulty of extrapolating a damping model from random measurements, two series of
stepped sine tests have been performed with increasing forcing input amplitudes at a fixed excitation
frequency of ν = 9 Hz, starting from the two equilibrium positions. An extract of the recorded
displacement is depicted in Figure 6.
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Figure 6. Stepped sine tests. Oscillations around the positive equilibrium in (a) and around the negative
equilibrium in (b).

The two measured responses are then stacked together to build the experimental restoring surface,
illustrated in Figure 7a. As before, if small velocities are taken into account (

∣∣∣ .
z
∣∣∣ < εs), the obtained slice

of the restoring surface approximates the restoring forceK (Figure 7b), and the results are comparable
with Figure 5b. The experimental damping forceD is depicted in Figure 7c and obtained considering
small displacements around the equilibrium positions (|z− z∗| < εd). The results in this case are much
more informative than the previous tests of Figure 5c.
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Figure 7. Experimental restoring surface with stepped sine excitations in (a); experimental restoring
force (blue dots, εs = 0.1%) and identified restoring force (red line) in (b); experimental damping forces
around z∗

−
(green dots, εd = 0.1%) and z∗+ (yellow dots, εd = 0.1%) in (c).
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A deeper look at the evolution of the damping force across the position of the moving mass can
be observed when slicing the restoring surface in the neighborhood of a general position z̃, such that∣∣∣z− z̃

∣∣∣ < εd. Results are represented in Figure 8, where different shapes of the damping force can be
observed to be varying in position z̃.
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and ܿ. 
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Figure 8. Variation in the experimental damping force across the position of the moving mass,
∣∣∣z− z̃

∣∣∣ < εd

with εd = 0.1%.

The damping force generally resembles the sliding friction behavior, but it appears to vary with
the position of the moving mass. In particular, the slopes of the negative and positive velocity regions
change due to the polynomial restoring force. The amplitude of the damping force changes as well,
and its variations can be described by a non-constant normal force along z. Indeed, the normal force
comes from the interaction between the moving mass and the rods, which varies during the movement
of the mass. Given the above considerations, the damping force is assumed as follows:

D

(
z,

.
z
)
= fd(z)tanh

(
4

.
z/vt

)
+ fs(z)

.
z/vt(

1
4

( .
z/vt

)2
+ 3

4

)2 + c
.
z. (5)

Equation (5) represents a continuous friction model, as in [33], and includes the following:

• A dynamical damping friction term fd(z), with a Coulomb-like function having a transition
velocity vt;

• A static friction term fs(z) to account for the stiction force and the Stribeck effect;
• A linear viscous damping term c

.
z, to account for possible viscous forces generated by the

lubricated slider.

The dynamic friction term fd(z) is assumed to be non-negative and described by a quadratic
function, while the static term fs(z) is assumed to be proportional to the dynamic term, yielding

fd(z) = max
{
0, αz2 + βz + γ

}
,

fs(z) = (ks − 1) fd(z), ks ≥ 1.
(6)

The complete equation of motion of the system is therefore

m
..
z + fd(z)

tanh
(

4
.
z

vt

)
+ (ks − 1)

.
z
vt(

1
4

( .
z
vt

)2
+ 3

4

)2

+ c
.
z + k3z3 + k2z2

− k1z + k0 = f . (7)
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The unknowns to be identified are the parameters defining the damping force, i.e., α, β, γ, vt, ks

and c.

4. Optimization-Based Identification Strategy

The identification pursued in this work aims to estimate the damping force via an
optimization-based strategy. In this context, the definition of the cost function to be minimized
is a crucial step, as it has a huge influence on the feasibility of the optimization. This is usually chosen
as the residual between a measured feature and the corresponding model prediction. A valid feature
in this context is the energy dissipated per cycle (EDC), given by the following considerations:

• The external forcing term is periodic, and the response is expected to be periodic as well (excluding
the chance of chaotic motion);

• The evolution of the dissipated energy with the input amplitude is directly correlated with the
dissipation functional form, i.e., the damping forceD;

• It depends both on the response amplitude and the phase with the forcing term.

The kth measured EDC corresponding to an input amplitude f0,k of the stepped sine test is called
Smes

k , while the corresponding model prediction is called Smod
k . The cost function ε is therefore defined

as the sum of the absolute differences:

ε =
∑

k

∣∣∣Smes
k − Smod

k

∣∣∣. (8)

Model predictions depend on the set of parameters to be optimized, which can be recast into a
vector θ as follows:

θ =
[

fd(z∗−), fd
(
z∗+

)
, fd(0), vt, ks, c

]T
. (9)

The final value θ is the minimizer of the cost function ε(θ):

θ = arg min
θ
ε(θ). (10)

Note that the vector of parameters takes into account the values of the dynamic friction forces
in z∗

−
, z∗+, 0 rather than α, β,γ of Equation (6) to have a better physical interpretation of the outcome.

The coefficients α, β,γ can eventually be found by fitting the quadratic function fd(z) to the considered
three points.

A genetic algorithm is adopted in this work to find the best set of parameters θ. Genetic
algorithms belong to the class of evolutionary global optimizers, and they are commonly used to
generate high-quality solutions to optimization problems using biologically inspired mechanisms,
such as reproduction, mutation and selection. Candidate solutions act like individuals in a population,
which evolves through successive generations. A portion of the existing population is selected at each
generation to breed a new offspring, and the selection is made upon the corresponding values of the
cost function. Modifications can be introduced to better explore the range of possible solutions and
avoid local minima. For instance, a mutation rate can be defined to introduce random changes to
the existing solutions. The reader can refer to [32] for an exhaustive description of evolutionary (and
genetic) algorithms.

4.1. Experimental Estimation of the Energy Dissipated per Cycle (EDC)

The EDCs are directly estimated from the experimental measurements by numerically computing
the integral of the response z(t) with respect to the harmonic input f (t) for each cycle and averaging
over the number of cycles. Transients are removed, so as to take into account only the steady-state
responses. Since the measurements are performed starting from the two equilibrium positions, two sets
of dissipated energies are collected, called Smes

− and Smes
+ and refer to the oscillations around z∗

−
and
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z∗+, respectively. The complete vector of measured EDCs is therefore Smes = vec
{
Smes
− , Smes

+

}
. Each final

value Smes
k is obtained by averaging over the cycles, and the associated standard deviation σmes

k is used
as an index of dispersion.

A representative response-input plot is reported in Figure 9 with an excitation amplitude equal to
1.3 N, while Figure 10 depicts the evolution of Smes with respect to the input amplitudes vector f0.
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Figure 9. Energy dissipated per cycle in (a) with excitation amplitude of 1.3 N. Blue: oscillations
around the positive equilibrium position; orange: oscillations around the negative equilibrium position.
Corresponding response-input plots in (b) and (c) with highlighted areas.

The range of considered input amplitudes goes from 0.2 to 2.7 N . Period doublings start to occur
in the experimental measurements beyond this value, which are not the object of this study. The error
bars in Figure 10 represent the quantity Smes

k ± 3σmes
k .
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4.2. Numerical Computation via Harmonic Balance Method with Amplitude Continuation

Considering a harmonic input of the kind f (t) = f0 sin(ωt), the energy dissipated over one cycle
S can be written as

S =

∫
cycle

z(t)d f = ω f0

∫ 2π
ω

0
z(t) cos(ωt)dt. (11)

Since the system described by Equation (7) is nonlinear, the response z(t) to a periodic excitation
can be written in terms of a Fourier series with H harmonics:

z(t) = Z0 + Re

 H∑
h=1

Zheihωt

. (12)

It can be easily proved that the integral of Equation (11) is zero for each integer harmonic
contribution of the response different from 1. Therefore, the EDC reduces to

S = ω f0

∫ 2π
ω

0
|Z1| sin(ωt + φ1) cos(ωt)dt = π f0|Z1| sin(φ1), (13)

where φ1 is the phase of the first harmonic of the response. Note that Equation (13) is valid only if
sub-harmonics are not taken into account.

The Fourier coefficients of the response z(t) can be rapidly computed via the harmonic balance
method for each forcing input amplitude f0,k and for a fixed ω. In particular, the focus is to track
the evolution of S varying f0, and to compare the model predictions Smod with the experimental
observations Smes of Figure 10. An arc-length continuation procedure (like the one proposed in [30]) is
adopted to study the evolution of the dissipated energy. The forcing input amplitude f0 is therefore
chosen as the “continuation parameter” and the solution for each f0 is sought along the arc-length of a
solution branch. This allows to account for possible singularities of the system being Jacobian, which
lead to response bifurcations [29]. An illustrative example is exposed in the following.

Illustrative Example

A linear oscillator with continuous velocity-based friction is considered in this example. The system
parameters are summarized in Table 2 and the equation of motion reads

m
..
y + c

.
y + ky + fd

tanh
(
4

.
y/vt

)
+ (ks − 1)

.
y/vt(

1
4

( .
y/vt

)2
+ 3

4

)2

 = f0eiωt. (14)

The excitation frequency ω is set to 80% of the linear natural frequency of the system
√

k/m ,
and the amplitude increases in the range 0–2 N. Seven harmonics are included in the response.

Table 2. Parameters of the illustrative example.

m (kg) k (N/m) c (Ns/m) fd (N) ks vt (m/s)

1.3 800 1 1 1.2 10−2

The nonlinear amplitude response curve obtained using HBM with the amplitude continuation
is depicted in Figure 11, together with the EDCs and the evolution of the harmonic coefficients.
An unstable branch can be noted in the region between 1.3 and 1.4 N. Multiple solutions exist in this
region, meaning that the system response would avoid the unstable branch and suddenly reach a
new stable solution. This phenomenon is very common in nonlinear systems when sweeping around
their resonance frequencies and it is usually called “jump” [29]. Here, the nature of the phenomenon
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is different, but the behavior is very similar. Figure 12 depicts the response of the system around
the unstable region computed by numerically integrating the equation of motion with the Newmark
algorithm [34] and under the amplitude sweep up and down excitations. The nonlinear amplitude
response curve computed with the HBM is also overlapped. The jump phenomenon can be clearly
observed. A slight difference can be noted between the HBM and numerical simulations around the
jump region. This is probably due to the different kind of excitation in the two approaches: numerical
simulations are conducted with an amplitude sweep excitation, which contains transients. The HBM
represents instead the steady-state solutions for each input amplitude value.Vibration 2020, 3 FOR PEER REVIEW  11 
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5. Results and Discussion

The unknown parameters of Equation (7) are identified by optimizing the residuals between the
measured EDCs Smes of Figure 10 and the predicted ones Smod according to Equation (13). Both sets of
measurements around the positive and negative equilibrium positions are considered.

The genetic algorithm is applied considering a population of 100 individuals, 20 generations and
20% mutation rate. The latter in particular is to allow the algorithm to explore a wider range of possible
solutions, by randomly modifying a portion of the existing population. The cost function with respect
to the single parameters of the optimization is depicted in Figure 13.
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It can be noted that the minimum value of the cost function is reached sharply when considering
the parameters fd(z∗−), fd(0), fd

(
z∗+

)
and c, while results are more dispersive for the others. It should be

highlighted though that these four parameters have the biggest influence in the EDC of the considered
measurements. The transition velocity and the static proportionality coefficient have a major influence
in the low-amplitude region, and tend to compensate each other. Some more details are presented in
the sensitivity analysis in the next section.

The value of the cost function across the generations of the genetic optimization is reported in
Figure 14. The minimum value of the cost function is ε

(
θ
)
= 0.012, and the corresponding set of

parameters θ is listed in Table 3.
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Table 3. Identified values.

fd(z*
−

)(N) fd(0) (N) fd(z*
+) (N) ks c (Ns/m) vt (m/s)

0.33 0.67 0.66 1.07 2.02 1.5 · 10−2

Eventually, the comparison between the measured EDCs and the final model predictions is
reported in Figure 15. The average percentage deviation between the measured and predicted EDCs is
6% for the positive oscillations and 12% for the negative ones. The model nicely captures the nonlinear
dynamics of the system, especially at higher input amplitudes. Errors are instead more consistent in the
low-amplitude region. Nevertheless, displacements in this region are so small that other phenomena
might be involved, such as displacement-dependent and hysteretic frictional behavior.
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Figure 15. Energy dissipated per cycle. Continuous lines: experimental estimations Smes
± 3σmes;

dashed-dotted lines: final model predictions. Blue line: oscillations around z∗+; orange line: oscillations
around z∗

−
.

5.1. Sensitivity Analysis

A sensitivity analysis is carried out on the parameters of the identification to check their influence
on the predicted EDCs. The parameters are varied in the measure of 20%, 50%, 70%, 120% and 150% of
their identified values in Table 3. In particular, fd(z) is varied with a coefficient kd, so as to consider the
quantity kd · fd(z). Figure 16 shows the results of the sensitivity analysis on the EDCs associated with
the oscillations around the positive equilibrium position.

As expected, the linear viscous damping and the dynamic friction term have the highest influence
on the overall behavior of the EDC. The transition velocity and the static friction term have some
importance in the low-amplitude area. Given the poor number of experimental points in this region,
their effects are difficult to separate in the optimization process, thus explaining their dispersion in
Figure 13. Furthermore, low-amplitude oscillations might be affected by other phenomena, such as
hysteresis loops, which are not considered in this study.
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Figure 16. Sensitivity analysis on the parameters of the identification. Dashed-dotted red line: reference
EDC with the identified values. Blue lines: EDCs corresponding to a 20%, 50%, 70%, 120% and 150%
variation of the selected parameter.

5.2. Nonlinear Amplitude Response Curves

Finally, the identified model is used to build the nonlinear amplitude response curve of the
structure, with an excitation frequency ν = 9 Hz and an input amplitude range of 0.1− 3.7 N. As already
pointed out in Section 4.1, period doublings start to occur in the experimental measurements after 2.7 N.
For this reason, sub-harmonics up to 1/4ν are also included in the following test to check whether
this happens also in the model. Figure 17 depicts the nonlinear amplitude response curve starting
from the positive equilibrium position, as well as the normalized harmonic coefficients. It can be noted
that sub-harmonics start to show up around the 3 N input amplitude, resulting in a period-doubling
cascade. Representations like the one in Figure 17a are usually called “bifurcation maps”. Each point
of a bifurcation map represents the amplitude(s) of the steady-state solution for a specific value of the
excitation amplitude. However, the map in Figure 17a is built using the harmonic balance method,
which allows only a certain number of sub/super-harmonics to be considered in the response. In other
words, it is not possible to predict chaotic behavior with this tool, as a periodic response is needed.

Vibration 2020, 3 FOR PEER REVIEW  14 

 

dispersion in Figure 13. Furthermore, low-amplitude oscillations might be affected by other 
phenomena, such as hysteresis loops, which are not considered in this study. 

5.2. Nonlinear Amplitude Response Curves 

Finally, the identified model is used to build the nonlinear amplitude response curve of the 
structure, with an excitation frequency ߥ = and an input amplitude range of 0.1 ݖܪ 9 − 3.7 ܰ. As 
already pointed out in Section 4.1, period doublings start to occur in the experimental measurements 
after 2.7 ܰ. For this reason, sub-harmonics up to 1/4ߥ are also included in the following test to check 
whether this happens also in the model. Figure 17 depicts the nonlinear amplitude response curve 
starting from the positive equilibrium position, as well as the normalized harmonic coefficients. It 
can be noted that sub-harmonics start to show up around the 3 ܰ input amplitude, resulting in a 
period-doubling cascade. Representations like the one in Figure 17a are usually called “bifurcation 
maps”. Each point of a bifurcation map represents the amplitude(s) of the steady-state solution for a 
specific value of the excitation amplitude. However, the map in Figure 17a is built using the harmonic 
balance method, which allows only a certain number of sub/super-harmonics to be considered in the 
response. In other words, it is not possible to predict chaotic behavior with this tool, as a periodic 
response is needed. 

 
Figure 17. The HBM with amplitude continuation, final model. Response amplitude in (a); normalized 
harmonic coefficients in (b). 

A final validation of the goodness of the model is depicted in Figure 18, showing the 
experimental bifurcation map compared with the predicted one. The deviations between the 
predictions and observations resemble the ones obtained with the EDCs in the amplitude range up 
to 2.7 N. Higher discrepancies show up after period doublings start to appear. This is somehow 
expected, since the model has been trained on lower amplitudes. Further, period doublings are 
difficult to handle experimentally, as the system starts to show a considerable dependence on small 
external perturbations, such as noise. This makes the amplitudes of the periodic solutions to be quite 
variable, and the forcing input difficult to control. 

1 2 3
Input amplitude (N)

z*
+

|Z
0|

1 2 3
Input amplitude (N)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 h
ar

m
on

ic
 c

oe
ffi

ci
en

ts

h = 0
h = 1/4
h = 1/2
h = 3/4
h = 1
h = 5/4
h = 3/2
h = 7/4
h = 2
h = 9/4
h = 5/2
h = 11/4
h = 3

a) b)

Figure 17. The HBM with amplitude continuation, final model. Response amplitude in (a); normalized
harmonic coefficients in (b).



Vibration 2020, 3 146

A final validation of the goodness of the model is depicted in Figure 18, showing the experimental
bifurcation map compared with the predicted one. The deviations between the predictions and
observations resemble the ones obtained with the EDCs in the amplitude range up to 2.7 N. Higher
discrepancies show up after period doublings start to appear. This is somehow expected, since
the model has been trained on lower amplitudes. Further, period doublings are difficult to handle
experimentally, as the system starts to show a considerable dependence on small external perturbations,
such as noise. This makes the amplitudes of the periodic solutions to be quite variable, and the forcing
input difficult to control.
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The encouraging results prove the goodness of the presented methodology and provide a reliable
model for a system with rich and strong nonlinear dynamics.

6. Conclusions

In this paper, the nonlinear identification of a negative stiffness oscillator has been presented.
In particular, the damping force of the device has been identified upon a physically based model,
governed by a frictional behavior and dependent on the velocity and position. The identification
has been carried out by minimizing the residuals between the model predictions and experimental
observations. In particular, the energy dissipated per cycle has been adopted as the optimization
criterion. On the experimental side, the system has been driven through harmonic tests with
several input amplitudes, in order to estimate the variations in the energy dissipated per cycle. On the
computational side, the harmonic balance method has been implemented with a continuation technique
on the forcing input amplitudes. Results show a good confidence in the identified parameters, with low
residuals in the analyzed input amplitude range. This confirm the effectiveness of the presented
methodology, which can be applied to a wide class of nonlinear systems.
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