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Abstract: In brake systems, some dynamic phenomena can worsen the performance (e.g., fading,
hot banding), but a major part of the research concerns phenomena which reduce driving comfort
(e.g., squeal, judder, or creep groan). These dynamic phenomena are caused by specific instabilities
that lead to self-excited oscillations. In practice, these instabilities can be investigated using the
Complex Eigenvalues Analysis (CEA), in which positive real parts of the eigenvalues are identified
to characterize instable regions. Measurements on real brake test benches or tribometers show that
the coefficient of friction (COF), µ, is not a constant, but dynamic, system variable. In order to
consider this aspect, the Method of Augmented Dimensioning (MAD) has been introduced and
implemented, which couples the mechanical degrees of freedom of the brake system with the degrees
of freedom of the friction dynamics. In addition to this, instability prediction techniques can often
determine whether a system is stable or instable, but cannot eliminate the instability phenomena on
a real brake system. To address this, the current work deals with the quantification of the relevant
polymorphic uncertainty of the friction dynamics, wherein the aleatory and epistemic uncertainties
are described simultaneously. Aleatory uncertainty is concerned with the stochastic variability of
the friction dynamics and incorporated with probabilistic methods (e.g., a Monte Carlo simulation),
while the epistemic uncertainty resulting from model uncertainties is modeled via fuzzy methods.
The existing measurement data are collected and processed through Data Driven Methods (DDM)
for the identification of the dynamic friction models and corresponding parameters. Total Variation
Regularization is used for the evaluation of derivatives within noisy data. Using an established
minimal model for brake squealing, this paper addresses the question of probabilities for instabilities
and the degree of certainty with which this conclusion can be made. The focus is on a comparison
between the conventional Coulomb friction model and a dynamic friction model in combination with
the MAD. This shows that the quality of the predictive accuracy improves dramatically with the more
precise friction model.

Keywords: brake system; Complex Eigenvalue Analysis; friction induced vibrations; polymorphic
uncertainty; fuzzy methods; Dynamic Friction Models; Data Driven Methods

1. Introduction

In mechanical engineering, numerous applications are strongly influenced by friction.
This concerns systems in which minimal friction is desired (such as for bearings and joints), as well
as systems with a need for a high friction level (such as clutches or brakes). For the latter mentioned
group, the overall goal of manufacturers is to reach a high friction force, in combination with low wear
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rates and acceptable vibration behavior. The design of the components and the materials of the contact
partners determine these aspects.

Very often, the resulting friction behavior is the consequence of tribological processes with
interactions across various research areas, e.g., Mechanics, Thermodynamics, and Tribo-Chemistry [1].
A very prominent example that is under high-effort-investigation in both academia and industry is the
technical brake system. The modeling of its vibration behavior and its correlation with the coefficient
of friction (COF) plays a crucial role in this application.

1.1. NVH in Brake Systems and Modeling Techniques

In brake systems, some dynamic phenomena can worsen the performance (e.g., fading,
hot banding), but most of the research concerns phenomena that reduce driving comfort (e.g.,
squeal, judder, or creep groan). These phenomena, summarized under the terms Noise, Vibration,
and Harshness (NVH) [2,3], are caused by specific instabilities that lead to self-excited oscillations [4].

The automotive industry started its investigations of NVH nearly 80 years ago, [5–7]. It has a
significant economic impact, with yearly investments above 100 Million Euros worldwide. Despite
this effort, the knowledge gained and technology developed are still not yet sufficient to completely
eliminate NVH problems. According to the literature, the three most common mechanisms that induce
NVH phenomena are as follows: The first mechanism is based on stick-slip behavior between the pad
and disc. The lateral pad oscillation is described by macroscopic self-excited oscillations caused by a
macroscopic decreasing friction characteristic with respect to sliding speed. This mechanism has been
investigated experimentally and numerically in many works, for example, in [8]. The discovery of
the second mechanism led to the realization that stick-slip is not the only possible cause of brake squeal
noise. The geometric or kinematic constraint-induced instability known as the sprag-slip mechanism
can bring a system to an instable state, and result in brake squeal noise, even in the case of a constant
COF. The third mechanism is based on the mode-coupling characteristic of the pad and disk, wherein
lateral and normal movements of the brake pad are coupled with the bending modes of the brake disk.
Mode coupling seems to have become the focus of many researchers in this field [9–12]. Although not
called mode-coupling or more general follower force instability, many further papers have been published
on this issue, e.g., [13].

In order to describe these phenomena, various modeling strategies have been investigated.
For fundamental investigations of the onset mechanisms, minimal models with few degrees of freedom
are sufficient, for instance, squealing [14–16] or creep groan [17,18]. The latter problem has also been
studied using commercial Multi-Body System tools with a greater number of masses [19]. The most
widespread approach in industry to model squealing concerns complex Finite Element models with
up to 1 million degrees of freedom to quantify the relevant frequencies and eigenmodes [9,20]. Due to
the great numerical effort required, only few computations are performed in the time-domain; instead,
many are carried out in the frequency domain. In all of these models, the COF (u) is an important
parameter, which significantly affects the outputs. It represents the relation between tangential force Fr

and normal force Fn and is implemented according to µ = Fr/Fn.
Realistic investigations of brake stability employ a transient analysis in the time domain. Here,

increasing oscillation amplitudes are observed, which continue up to some steady state motion,
known as Limit Cycle Oscillations (LCO). Accurate results can be attained via direct numerical time
integrations. Through this method, nonlinearity can be accounted for in systems, but is computationally
expensive, especially when dealing with large-scale Finite Element analysis or uncertainty analysis
(e.g., Monte Carlo simulations).

In practical applications, the transient analysis with nonlinear systems is generally avoided.
The stability analysis often only deals with linearized systems via Complex Eigenvalues Analysis
(CEA).



Vibration 2019, 2 137

1.2. Friction in Brake Systems

Friction is essentially determined by mechanical and chemical effects on an atomic scale.
Mesoscopic surface structures and textures, as well as wear and material transport, also determine the
dynamic properties of friction. The in situ calculation of macroscopic friction phenomena based on
these nanoscale effects is still not yet possible. In addition, friction usually has very application-specific
properties, which are rather well-understood in very few applications. Therefore, measurements close
to the problem are necessary, especially with regard to the variation of problem-specific influencing
variables. More information about the measurement technology of the COF can be found in [21–24]
and references therein.

In Figure 1, an example of industrial COF measurement for brakes resulting from an “AK Master
Test,” which is performed through a series of parameter variations, is shown. All blue lines show the
COF and all red lines plot the disk temperature. The point of interest here is that the results highlighted
in yellow are very different from one another, despite identical test parameters.
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Figure 1. Example of real industrial measurement of the COF (AK Master Test), where the results
with a yellow background correspond to identical testing conditions, the COF is shown in blue,
and temperature is shown in red.

The measurements are difficult to reproduce–the mean value varies significantly, the deviations
are large, and these effects are not yet well-understood. It is well-known that many aspects contribute
to these effects, for instance, normal pressure, relative velocity, temperature, humidity, and load
history [1,21]. Despite this complexity, many models treat the COF as a constant whose value is set
to the mean value gained by a large number of measurements. In order to take into account the
aforementioned dependencies, this procedure of averaging over mean values of many applications is
usually provided for different conditions. Nonetheless, the COF is treated as a stationary parameter.

The analysis of friction in brake systems reveals a complex dynamic dependence between friction
and wear. Friction produces wear, but wear affects the surface topography, and in turn the friction
power itself. The wear in technical brake systems causes a dynamic equation of growth and destruction
of surface structures (known as “patches”) on the brake pad, which carry the friction power.
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The fact that the growth and destruction of patches over time is a key element for the
understanding of transient friction phenomena was first discussed in [25], resulting in a set of two
first order differential equations (also see Section 2.2). This friction model can reproduce unsteady,
temperature-dependent friction force characteristics. Friction phenomena, such as time lag behavior,
hysteresis, and the fading effect, can be simulated with this friction model. It furthermore includes a
generic type of dynamics, which provides physical explanations for phenomena that are sometimes
(mis-) interpreted as noise in the measurement signal. Additionally, in [1], this model was extended by
two further system parameters (disk temperature and amount of wear), allowing for a comprehension
towards the coupling effects of friction, wear, and heat in the boundary layer.

The latter models already capture the dynamics of friction much better, but still lack a fundamental
explanation of why a brake system’s squealing behavior changes from one application to another
although all external parameters are identical. In addition to appropriate friction models, one way to
treat such behaviors is through analysis incorporating uncertainty methods with friction as a dynamic
system variable, which is the main focus of the current research.

1.3. Scope of the Studies

The main focus of this paper is the implementation of uncertain friction data in models to predict
instabilities. In order to clarify the corresponding basic ideas, the possible processes and approaches
are schematically presented in Figure 2. An industrial company usually carries out tests to determine
the COF on full-size dynamometers or partial lining test rigs (tribometers), whereby the load and
system parameters are varied.

This results in a probability distribution for the COF, which is usually characterized by very
large variances. Either a mean value is calculated from all measurements and passed on to the
eigenvalue analysis or the probability distribution itself is used in the sense of a Monte-Carlo simulation.
The large variance of the input data obviously results in a large variance with respect to the stability
predictability, which can be interpreted as a “wide blurred band” in a stability map (see path 1 in
Figure 2). In fact, however, these companies are interested in obtaining precise information on the
probability of instabilities (and thus noise) occurring. This probability is an essential target parameter
for the respective manufacturer when designing its components. For this reason, the manufacturer
strives not only to keep the probability of occurrence small, but also to improve the prediction quality.
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For this purpose, concepts are to be applied which precondition the measurement data in the
sense of a better description of the friction dynamics and prediction quality. There are several possible
ways of achieving this goal. A purely data-based approach, in which Data Driven Methods are applied
to the original data without any knowledge of physics, is one possible approach (path 2). However,
this approach contains the risk that mathematical artifacts instead of physical laws will be identified.
Since physical models are available for the COF description, an alternative approach will be taken
in this paper. This is based on a-priori knowledge, which provides hypotheses for the mathematical
structure of the differential equation. Data Driven Methods will be used to model the remaining
uncertainty (path 3). The aim of this approach is to identify a much sharper and thus more precise
stability limit than the one according to path 1.

Future work will focus on the comparison between the approaches according to path 2 and 3
and should highlight the advantages and disadvantages of the respective strategy. This also includes
concepts where the strategies of path 2 and 3 are coupled with each other.

2. Methods

In this paper, models with polymorphic uncertainty are applied to a minimal model for instabilities
of NVH phenomena. In the following subsections, the system to be investigated and the inclusion of
the measurement data are presented.

2.1. The Method of Augmented Dimensioning

Concerning the brake dynamics in this study, the friction is not only treated as one uncertain
parameter, but also as a dynamic system variable incorporated as a differential equation (also see
Sections 1.2 and 2.2). Here, the authors follow the new concept where the system state space is
expanded by the dynamic state variables representing the friction, the so-called Method of Augmented
Dimensioning (MAD) [26]. The MAD considers the system as a coupled system of brake dynamics and
friction dynamics. The stability of this coupled system is different compared to the single uncoupled
brake dynamics. With M

..
x(t) = fx

( .
x, x, µ, t

)
and

.
µ(t) = fµ

( .
x, x, µ, t

)
, the general form of this coupled

system can be written for an eigenvalue analysis (where only the homogenous part is necessary),
as follows:[

M 0
0 0

][ ..
x(t)
..
µ(t)

]
+

[
D 0

− ∂ fµ

∂
.
x

I

][ .
x(t)
.
µ(t)

]
+

 C − ∂ fx
∂µ

− ∂ fµ

∂x − ∂ fµ

∂µ

[ x(t)
µ(t)

]
=

[
0
0

]
, (1)

where the first line in Equation (1) represents the system of the brake dynamics, while the second line
represents the friction dynamics, and x(t) describes the mechanical degrees of freedom. Similarly,
µ(t) represents the degrees of freedom for the friction system and its time-derivative

.
µ(t) takes into

account the existence of dynamic friction behaviour. The coupling term ∂ fµ/∂
.
x in the damping matrix

contains the friction model with respect to the velocity dependence, such as a falling characteristic
or a Stribeck-like effect. The term ∂ fµ/∂x combines the normal force resulting from the mechanical
deformations with the COF in the contact, i.e., it primarily considers the normal force dependence
of the COF. Finally, the coupling term ∂ fx/∂µ takes into account the friction force resulting from the
COF. For all CEA calculations, the derivatives must be provided in a linearized form; for this purpose,
the generally non-linear functions must be linearized at the respective equilibrium points. Further
details on this method and its effects can be found in [26].

Based on the equations in Equation (1), the CEA is performed and provides eigenvalues in
the complex form, i.e., λj = αj + iωj, where αj is the real part and ωj is the imaginary part of the
jth eigenvalues.

The sign of the real part eigenvalues is the well-known criterion for the stability evaluation of
the investigated system. If any of the eigenvalues’ real parts are positive, the system is unstable,
corresponding to increasing oscillation amplitudes. Only if all real parts are negative is this a stable
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system with decaying oscillating amplitudes. The imaginary part ωj depicts the corresponding
frequency, whereas the corresponding eigenvector represents the oscillation’s shape. The CEA
computations are performed by using the polynomial eigenvalues solver in MATLAB R2017b.

2.2. Eigenvalue Analysis with an NVH Minimal Model for Brakes

In the present study, the primary goal is to incorporate uncertainty models for friction into
eigenvalue questions. For this reason, these first studies are carried out on a minimal model for NVH
phenomena in brake systems. For this purpose, the well-established model originally introduced by
Hamabe [27] and further developed by Hoffmann et al., [11,12] with two degrees of freedom that is
shown in Figure 3 is used.
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Figure 3. The NVH minimal model based on [12,27].

The conceptual model concerns a single mass sliding on a rotational belt. This mass is supported
by a spring with a stiffness k1 in the parallel direction to the belt surface and a spring with stiffness k2,
which accounts for the physical contact stiffness of the object’s mass and sliding surface. These springs
are accompanied by the dampers c1 and c2, respectively. An additional spring acts at an angle of 45◦

relative to the horizontal line. This spring with the stiffness k represents the elasticity of the brake pad
and brake disk and supports the occurrence of mode-coupling instabilities. The normal force Fn acts
downwards and causes a force resisting the motion of the mass in the horizontal direction (the friction
force Fr), so that the COF µ can be computed according to µ = Fr/Fn.

The paper’s objective is to evaluate the quality of the conclusions on stability, including a priori
knowledge by using uncertainty modeling techniques for the friction. For this purpose, two different
hypotheses are used to describe the COF:

• Hypothesis 1: Coulomb friction model

µ = C = constant (2)

This hypothesis represents the most common and simplest friction model that practically does
not include any expert knowledge.

• Hypothesis 2: Ostermeyer friction model [1,21]

.
µ = −α

(
(β + |vr·Fn|)·µ− γ·Tp

)
.

Tp = −δ
(
Tp − T0 − ε·|vr·Fn|

) (3)
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where Tp is the contact temperature, Fn is the normal force, vr is the relative velocity, and
(α, β, γ, δ, ε, T0) are the corresponding system parameters. This model was developed especially
for brake systems, is based on measurements and theories, and therefore contains a very high degree
of expert knowledge.

According to Equation (1), the NVH minimal model described above [11], and the extended
formulations by the MAD, the governing equations for the coupled system incorporating the Coulomb
friction model can be written as follows [26]: m 0 0

0 m 0
0 0 0




..
x1
..

x2..
Fr

+

 c1 0 0
0 c2 0
0 0 0




.
x1.
x2.
Fr

+

 K11 K12 1
K21 K22 0
0 −µk2 1


 x1

x2

Fr

 =

 0
0
0

, (4)

where Fr is the friction force, and the stiffness matrix entries are K11 = k1 +
k

2m , K22 = k2 +
k

2m ,
and K12 = K21 = − k

2m .
In this study, all the corresponding parameters are selected and assumed to be invariable, except

for the COF, which is considered as a variable parameter in the CEA. The constant parameter values are
defined as follows: m = 1 kg, k1 = 17.5 N

m , k2 = 18 N
m , k = 10 N

m , c1 = 0.7471 Ns
m , c2 = 0.5985 Ns

m , vbelt =

1 m/s . These values are based on the (also roughly estimated) values from [11], whereby c1 and c2

have been adjusted for the present study in order to illustrate the uncertainty effects more clearly.
For the case of the coupled NVH model with the Ostermeyer friction model (hypothesis 2),

the equations of motion for the coupled system read [26,28]:


m
0
0
0
0

0
m
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0





..
x1
..

x2..
Fr
..
µ
..
Tp

+


c1

0
0

D41

D51

0
c2

0
0
0

0
0
0
0
0

0
0
0
1
0

0
0
0
0
1





.
x1.
x2.
Fr
.
µ
.
Tp

+


K11

K21

0
0
0

K12

K22

−µ0k2

K42

K52

1
0
1
0
0

0
0
k2

K44

0

z0

0
0
0
−αγ

δ




x1

x2

Fr

µ

Tp

 =


0
0
0
0
0

,

(5)

with the terms
D41 = −α·µ0·k2·z0·|r(t)|/r(t), (6)

D51 = δ·ε·k2·z0·|r(t)|/r(t), (7)

K42 = α·µ0·k2·vbelt·|r(t)|/r(t), (8)

K52 = −δ·ε·k2·vbelt|r(t)|/r(t), (9)

K44 = α·(β + |r(t)|), (10)

These also include the parameters (z0, x0,Tp0, µ0) corresponding to the stationary solution, i.e.,
the equilibrium point at which the system is linearized. These terms read as follows:

z0 = −A/2−
√
(A/2)2 − B (11)

x0 = −z0·K22/K12 −m·g/K12 (12)

Tp0 = T0 + ε·|r(t)| (13)

µ0 = γ·Tp0/(β + |r(t)|) (14)



Vibration 2019, 2 142

A =

(
K12 − K11·K22

K12

)
·β + k2·γ·T0 − K11/K12·m·g·k2·vbelt

vbelt·k2·
(

k2·γ·ε +
(

K12 − K11·K22
K12

)) (15)

B =

K22
K12
·m·g·β

vbelt·k2·
(

k2·γ·ε +
(

K12 − K11·K22
K12

)) (16)

r(t) = −k2·z0·vbelt (17)

Since the Coulomb friction model is a 0th order differential equation and the Ostermeyer model
is a 2nd order differential equation, the latter obviously results in two more eigenvalues. In addition,
the existing eigenvalues shift, especially with the increasing influence of the friction dynamics.
Equations (4) and (5) serve as the basis for the eigenvalue analyses for all further investigations
found in Section 3.

2.3. Data Modeling

The following subsection documents the COF measurement data obtained for the studies and
their exploitation for uncertainty studies.

2.3.1. Considered Data Set

In the present case, the COF characteristic is performed on an automated tribometer, the so-called
Automated Universal Tribotester (AUT), available at the Institute of Dynamics and Vibrations at
Braunschweig University of Technology [29], (see Figure 4). These are measurements in which a 2 cm2

(height: 2 cm (tangential to sliding velocity), width: 1 cm (perpendicular to sliding velocity)) part of
the pad material (pin) is pressed against a rotating disk. Here, the forces in the pin and the temperature
of the disk near the contact are measured. The COF is calculated from the ratio of tangential force to
normal force.
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the existing eigenvalues shift, especially with the increasing influence of the friction dynamics. 
Equations (4) and (5) serve as the basis for the eigenvalue analyses for all further investigations found 
in Section 3. 

2.3. Data Modeling 

The following subsection documents the COF measurement data obtained for the studies and 
their exploitation for uncertainty studies.  

2.3.1. Considered Data Set  

In the present case, the COF characteristic is performed on an automated tribometer, the so-
called Automated Universal Tribotester (AUT), available at the Institute of Dynamics and Vibrations 
at Braunschweig University of Technology [29], (see Figure 4). These are measurements in which a 
2cm² (height: 2cm (tangential to sliding velocity), width: 1cm (perpendicular to sliding velocity)) part 
of the pad material (pin) is pressed against a rotating disk. Here, the forces in the pin and the 
temperature of the disk near the contact are measured. The COF is calculated from the ratio of 
tangential force to normal force. 

 
Figure 4. Automated Universal Tribotester (AUT), taken from [29]. 

The normal force and rotational speed are specified for each application. This specification is 
made according to a certain scheme in which the frictional power is increased successively from 
application to application. This results in a procedure consisting of a total of 461 applications. These 
two controlled variables are also measured during the application, whereby, in [29], it has been 
demonstrated that the automation can very well maintain these specified values over the entire 
procedure.  

Much greater variation during an application can be observed for the COF and the temperature. 
Figure 5 shows the corresponding values at application 78 as an example of this. 

Figure 4. Automated Universal Tribotester (AUT), taken from [29].

The normal force and rotational speed are specified for each application. This specification is made
according to a certain scheme in which the frictional power is increased successively from application
to application. This results in a procedure consisting of a total of 461 applications. These two controlled
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variables are also measured during the application, whereby, in [29], it has been demonstrated that the
automation can very well maintain these specified values over the entire procedure.

Much greater variation during an application can be observed for the COF and the temperature.
Figure 5 shows the corresponding values at application 78 as an example of this.
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summarized in the following section.  

2.3.2. Model Identification via Data Driven Methods 

The friction measurement curves presented in the previous section are to be implemented in the 
form of differential equations. In recent years, Data Driven Methods (DDM) [30,31] have become 
firmly established for this purpose. In principle, they are capable of extracting such functional 
relationships from measurement data. This methodology will also be used in the context of this study. 
Special attention must be paid to the fact that these methods could also identify mathematical artifacts 
instead of physical models, which is disadvantageous for the understanding of the system [32]. The 
corresponding backgrounds and mathematical approaches are explained below. 

This model identification method refers to the research field of Machine Learning (ML) and has 
recently been the focus in different fields of applications.  

In the present work, the DDM chosen by the authors is based on optimization with sparse 
regression techniques [30], which is applicable to identifying Ordinary Differential Equations or even 
Partial Differential Equations. The governing equations for complex physical systems are oftentimes 

Figure 5. Measured values at application #78 (start: t = 3926.5s, end: t = 3976.5s). (a) COF,
(b) temperature.

Application #77 ends at t = 3926.5 s, application #78 lasts from t = 3926.5 s to t = 3976.5 s, and from
t = 3976.5 s, application #79 begins. An application takes about 50 seconds; at a sampling rate of
100 Hz, this corresponds to 5000 samples per application. These curves already clearly show that
both the COF and the temperature within an application and also from application to application can
change considerably.

Figure 6 shows the measured values for the entire procedure (461 applications), plotted over the
data point number (the total number of samples is approximately 2.3 million).
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For this project, these data were reprocessed and prepared for the identification of friction models
and their uncertainty quantifications. The applied techniques for this step are briefly summarized in
the following section.

2.3.2. Model Identification via Data Driven Methods

The friction measurement curves presented in the previous section are to be implemented in the
form of differential equations. In recent years, Data Driven Methods (DDM) [30,31] have become
firmly established for this purpose. In principle, they are capable of extracting such functional
relationships from measurement data. This methodology will also be used in the context of this
study. Special attention must be paid to the fact that these methods could also identify mathematical
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artifacts instead of physical models, which is disadvantageous for the understanding of the system [32].
The corresponding backgrounds and mathematical approaches are explained below.

This model identification method refers to the research field of Machine Learning (ML) and has
recently been the focus in different fields of applications.

In the present work, the DDM chosen by the authors is based on optimization with sparse
regression techniques [30], which is applicable to identifying Ordinary Differential Equations or even
Partial Differential Equations. The governing equations for complex physical systems are oftentimes
unknown or only partially known, due to, e.g., nonlinearities, unknown parameter dependencies,
coupled multiphysics, or multiscale phenomena, etc.

The starting point for the model identification is the very general formulation of a physical model
in the following form:

.
u = N(u, ux, uxx, . . . . . . , x, t, p) , (18)

where the left hand side of Equation (18) is the time derivative of a variable (u), and the right hand
side contains the function N(·) which can represent various linear and nonlinear terms, as well as
operators (such as spatial derivatives) and corresponding parameters p. The main objective of DDM is
to identify N(·) when only time series of measurement data representing the system are available.

To determine the N(·) terms, a library θ(U) of all possible candidate terms and the time derivative
of measurement data

.
U will be evaluated directly from the collected data. The correlation between

.
U

and θ(U) can be formulated according to [30]

.
U = θ(U)ξ, (19)

where ξ contains the coefficients associated with the candidate terms. In Equation (19), the time
derivative vector

.
U is a column vector with the length n ∗m, where n is the number of measured state

variables and m is the number of collected time steps. Similarly, for the library θ(U), the matrix has the
dimension of k columns and n ∗m rows, where k equals the number of candidate terms:

.
u(x0, t0)
.
u(x1, t0)
.
u(x2, t0)

...
.
u(xn−1, tm)

.
u(xn, tm)


=



1 u(x0, t0) ux(x0, t0) . . . u5uxxx(x0, t0) . . .
1 u(x1, t0) ux(x1, t0) . . . u5uxxx(x1, t0) . . .
1 u(x2, t0) ux(x2, t0) . . . u5uxxx(x2, t0) . . .
...

...
...

. . .
... . . .

1 u(xn−1, tm) ux(xn−1, tm) . . . u5uxxx(xn−1, tm) . . .
1 u(xn, tm) ux(xn, tm) . . . u5uxxx(xn, tm) . . .




ξ1

ξ2

ξ3
...

ξk

 (20)

Typically, Equation (20) can be solved for ξ by means of a least square optimizer. Without
further conditionings, however, it is difficult to realize a proper solution, as ξ will be full of non-zero
terms. To avoid this effect, it is the aim to keep ξ sparse, with only a few non-zero terms. For this
purpose, the optimization process of the least square method is extended by adding the following
regularization term:

ξ̂ = argmin
ξ
||θ(U)ξ −

.
U||

2
2 + εκ(θ(U))||ξ||0, (21)

where κ(θ(U)) denotes the condition number of the matrix θ(U) and ε is a constant value to control the
balance between the first (data fidelity term) and second term (regularization term). The regularization
will force the solutions vector ξ to become sparse [30]. This approach allows one to identify the
dominant system-determining terms, which is not only numerically efficient, but can also be of great
use for the interpretation of measurement data.
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2.3.3. Tracking Information of Noisy Data via Total Variation Regularization (TVR)

In order to perform the identification of a physical model and its parameters via DDMs described
in the previous section, it is very important to appropriately consider time-derivatives for values that
could be influenced by noisy data ( f ). Let

f := µd = µm + δm + ε , (22)

where µm + δm := µ contains physical information and ε contains uncorrelated random noise.
To calculate the derivative value of noisy data via the typical finite difference method is obviously
unsuitable and might result in very large errors. Oftentimes, the methods used to calculate derivatives
after denoising also do not produce satisfactory results. Therefore, regularization should take place
directly in the processes of differentiation, as it can guarantee that the derivative will have a higher
degree of regularity. This method, the so—called method of Total Variation Regularization (TVR),
was further developed by Rick Chartrand [33] and followed up the methods of Tikhonov [34].
The associated ideas are briefly explained below.

The evaluation of the derivation of data ( f ) in a time interval [0, T] can be completed by
minimizing the following functional:

F(w) = α
∫ T

0

∣∣ .
w
∣∣dt +

1
2

∫ T

0
|Aw− f |2dt :=

∫ T

0
L
(
w,

.
w, t
)
dt (23)

The functional F(w) is defined on the interval [0, T], where f is the noisy and possibly non-smooth
data, w (in this context it can be understood as an analogy to

.
u in Equation (18)) is the required

differentiation of f , and
.

w is the first derivative of w. The usage of the TVR accomplishes two
advantages. It suppresses the noise as the noise function would have a large total variation. It also does
not suppress jump discontinuities, unlike the typical regularizations. This allows for the computation
of discontinuous derivatives, and detection of corners and edges in noisy data [33].

To find the minimum of the functional F(w), the well-known Euler-Lagrange equation is applied:

∂L
∂w
− d

dt
∂L
∂

.
w

= AT(Aw− f )− α
d
dt

.
w∣∣ .
w
∣∣ = 0, (24)

where AT( f (a)) :=
∫ T

a f (a)dt is the adjoint of the operator A. The approach continues with the iterative
Gradient Descent procedure. In this method, it is assumed that the variation parameter w is changed
along with artificial time evolution. Therefore, Equation (24) can be rewritten in the following form:

∂w
∂τ

:= α
d
dt

.
w∣∣ .
w
∣∣ − AT(Aw− f ) = 0. (25)

Substituting the term
∣∣ .
w
∣∣ with

√( .
w
)2

+ e, while e > 0, e � 1, introduces a small number for
avoiding the (otherwise possible) dividing by zero:

∂w
∂τ

:= α
d
dt

.
w√( .

w
)2

+ e
− AT(Aw− f ) = 0. (26)

Typically, Equation (26) can be efficiently solved with an explicit time marching scheme,
discretized as ∂w/∂τ := (wn+1 − wn)/∆τ for fixed values of ∆τ, and wn+1 − wn = ∆τgn, where gn

characterizes the discretized right side term of Equation (26) at the current iteration step (n) [33,34].
When ∆τ is small, the convergence is rather slow, while with increasing ∆τ, divergence might

occur. The optimum of ∆τ should not be greater than the inverse of the Hessian (second-order
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partial derivation) (Hn) of F(wn). In this case, ∆τ is replaced by H−1
n and the iteration steps are then

performed according to Equation (27):

wn+1 = wn + H−1
n gn. (27)

To construct gn and Hn, it is firstly assumed that w is defined on a uniform grid {t}T
0 =

{0, ∆t, 2∆t, . . . , T}. The derivatives of w are computed halfway between two grid points as centered
difference Dw(ti + ∆t/2) = (w(ti+1)− w(ti))/∆t; this procedure defines the differentiation matrix D.
The integrals of w are likewise computed halfway between two grid points, using the trapezoid rule to

define matrix A. Let Qn be the diagonal matrix whose ith entry is (((wn(ti)− wn(ti−1))/∆t)2 + e)
−1/2

,
and Ln := ∆tDTQnD. Then, the term gn becomes gn = αLnwn − AT(Awn − f ). The approximation of
the Hessian of F(wn) is derived according to: Hn := ∂2F(wn)/∂w2

n = AT A− αLn.
With these two methods (DDM and TVR), the measurement data of the COF and the contact

temperature are processed. Especially for the signal of the COF µ, TVR produces a reasonable
smoothing and reduces the strong noise very well.

2.4. Polymorphic Uncertainty Modeling

In general terms, uncertainty can be classified into two classes with respect to its characteristics.
One is an irreducible uncertainty, namely aleatory uncertainty, which refers to the natural stochastics
in system processes, e.g., the variations of manufacturing processes, material properties, geometry
properties, etc. In contrast to this, uncertainty with reducible characteristics is known as epistemic
uncertainty. This may refer to, i.e., the lack of knowledge (model uncertainty), lack of statistical
information (statistical uncertainty), or accuracy of data (perceptual uncertainty), etc. This type of
uncertainty can be significantly reduced when, e.g., better knowledge, more statistical information,
or an improved measurement accuracy are available. This concept has already been applied to simple
COF formulations for eigenvalue problems in brake systems [35].

The occurrence of only one uncertainty (aleatory or epistemic) can also be referred to
as monomorphic uncertainty, whereas the joint occurrence is called polymorphic uncertainty.
The uncertainty quantification could be carried out based on, e.g., a probabilistic approach,
a possibilistic approach, or even a combination of both techniques. In general, the probabilistic
approach is used for aleatory uncertainty analysis, when the informative variation is available, e.g.,
in a typical stochastic process.

The possibilistic approach has proven to be an adequate description, if the range or interval of
the statistical output is of particular interest or statistical data or knowledge are limited etc., so the
probabilistic approach would not provide much more information [36]. In these cases, fuzzy-like
algorithms can improve the informative value of the possibilistic approach by using the fuzzy
membership function instead of only a simple interval.

The transition between the usefulness of a probabilistic and possibilistic description is sometimes
fluent and primarily linked to the available amount of data and knowledge. Thus, in some cases,
the possibilistic approach can be replaced by the probabilistic approach. For example, when the
incompleteness (statistical uncertainty) is based on a low volume of available data, the possibilistic
approach is suitable. However, if more statistical data are collected, the probabilistic approach can be
used instead of the possibilistic one, as more informative statistical outputs can be obtained.

For the probabilistic approach, the Monte Carlo simulation is often used. This methodology
spreads a large number of sampling data over the design parameter space, and forwards them through
the analysis of the model or mapping function.

The epistemic uncertainty analysis is carried out via the possibilistic approach; the fuzzy
method [37] is used in this study. The fuzzy members are defined as the convex set of fuzzy values
over the universal set (R). The membership function is generally defined with p̃(x) ∈ {0, 1} and at
the nominal point x, the fuzzy value is p̃(x) = 1, which represents the true value for the case of no
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epistemic uncertainty. The form of the membership function can be defined as the corresponding kernel,
in which the distribution of epistemic (when information is available) data can be well-described.
For a simplified example, the fuzzy number can be defined as a triangular kernel, for which only three
points of information are required. Between these three points, a linear interpolation is carried out, as
shown in Equation (28):

p̃ =


1

r−q (x− q) for q < x ≤ r
1

s−r (s− x) for r < x ≤ s
0 otherwise

, (28)

where (q, r, s) denote the minimum, nominal, and maximum point of the interval, respectively.
This kernel function can take on other forms based on the characteristic information inside the interval,
and more information on this aspect can be found in [36,37].

In the present study, polymorphic uncertainty modeling shall be performed. The problem to be
considered is the calculation of eigenvalues, which are influenced by different forms of uncertainty.
The basis of the calculations is provided by the measurement data introduced in Section 2.3.1. For this
purpose, the parameters for two different friction models (Coulomb, Ostermeyer) are calculated for
each of the 461 measurement applications. The parameters determining the friction characteristics
vary between the individual applications so that there are 461 parameter sets for each friction model.
These parameter sets should be regarded as aleatory uncertainties, since it is assumed here that the
cause of these uncertainties is primarily of a physical nature, i.e., no significant reduction of the
uncertainty can be expected from further measurements. As a result of the aleatory uncertainty model,
a corresponding probability density function for the eigenvalues is determined.

Neither friction models are able to reproduce the measured COFs exactly over time. This results
in a “band of uncertainty” for each individual application. The reason of this can be understood as
a lack of knowledge, since even more suitable friction models can further reduce this band. Thus,
this aspect represents an epistemic uncertainty and the implementation of this band can be carried out
with fuzzy methods. The exact procedures and results are discussed in Section 3.

3. Results

As already introduced in Equation (22), the relation between the measurement data (µd) and the
response of model (µm) can be written in the general form µd = µm + δm + ε, where δm is the bias
representing model uncertainty and ε is the measurement uncertainty, e.g., noise. Typically, in practice,
µm is assumed to be constant (as in the Coulomb friction model) and used like this in analysis, such as
NVH problems. This assumption is expected to lead to a large model uncertainty δm, which makes the
NVH prediction rather inaccurate.

In order to reduce this uncertainty caused by the bias term, a sophisticated and more realistic
friction model (the Ostermeyer friction model, see Section 2.2) is implemented and compared to
Coulomb’s model with respect to polymorphic uncertainty quantification for stability studies.

3.1. Stability of NVH Model with Coulomb Friction Model and Polymorphic Uncertainty

First, polymorphic uncertainty quantification is carried out with the conventional Coulomb
friction model. Figure 7 shows the basic procedure.
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Figure 7. Flowchart of polymorphic uncertainty quantification for stability analysis with Coulomb’s
friction model.
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The measurement data for the coefficient of friction are carried out application-wise. First,
the procedure for determining the nominal characteristic values is presented (Figure 7, dark blue,
lower path). For an ith application, the mean COF is first determined (this correlates to Coulomb’s
friction model that the COF is a constant). For this COF, all eigenvalues are calculated according to
Equation (4) in Section 2.2. To find instabilities, the real parts belonging to the complex eigenvalues are
extracted and the largest value is stored. This largest value ultimately determines whether the system
is stable (value is negative) or unstable (value is positive) for the COF applied.

For the 461 applications examined, this results in 461 maximum real parts that can be represented
in a probability density function. From this, conclusions can be made about stability according to the
nominal values µm (fraction of applications with a maximum real part greater than 0).

Figure 8a shows the histogram for the averaged COFs, while Figure 8b shows the empirical
cumulative distribution function for the largest eigenvalue real parts. This graph shows that, according
to the measurement data, the nominal probability of an instable behaviour of the NVH minimal model
in Section 2.2 combined with the Coulomb friction model is about 55%.Vibration 2019, 3 FOR PEER REVIEW  14 
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Figure 8. Uncertainty quantification for stability analysis of 461 measurement applications with
an NVH-minimal model with Coulomb’s friction model: (a) histogram for the mean COF and
(b) cumulated density function for the maximum real parts.

So far, the aleatory part of the uncertainties has been taken into account. The epistemic part refers
to the uncertainty inherent in the friction model used. The procedure for this is as follows (see also
Figure 7, light blue, upper path). For the ith application, the deviations between the measured values
and the mean value are determined. In addition, special attention is paid to the largest and smallest
COF of an application and their difference to the mean value. Figure 9 shows the corresponding
deviations over time (a) and the corresponding histogram (b) using application #1 as an example.
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This results in a band for each application, which characterizes the inaccuracy of the friction
model. This interval correlates to the bias term of the model uncertainty. For the modeling of the
epistemic uncertainty, the largest and smallest values of an application are used. These values are
transferred to the eigenvalue solver and, as for the mean COF, the maximum real part is determined.
This results in two further curves for the cumulated probability density function; one curve for the
respective minimum COFs and another for the respective maximum COFs.

Figure 10 shows the three corresponding curves (nominal, maximum, minimum) in one plot.
Of particular interest here are the values at alpha-cut 0 (minimum and maximum) and 1 (nominal
value) at maxRe(λ) = 0, as this represents the stability border. The corresponding values here are
(0.449, 0.178, 0.564). This information is, for example, very unsatisfactory for the engineer who designs
the brake system, since a conclusion like “The system will be most likely stable with 44.9% probability,
but it could also be up to 17.8% or 56.4%” is difficult to handle for the development process, since the
width of the uncertainty is very large.

The width of this probability interval can be reduced by improving the friction model,
thus reducing the bias term. In the next section, the authors present the results when using
Ostermeyer’s friction model instead of Coulomb’s.Vibration 2019, 3 FOR PEER REVIEW  15 
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3.2. Stability of NVH Model with Ostermeyer Friction Model and Polymorphic Uncertainty

This subsection is devoted to the question of how epistemic (model) uncertainties in particular can
be influenced by a-priori (expert) knowledge in the form of a more suitable friction model. The flow
chart for the uncertainty modeling based on the Ostermeyer friction model is shown in Figure 11.
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As with Coulomb’s friction model, the recorded measurement data is evaluated application-wise.
For this purpose, regularization (TVR) is first performed according to Section 2.3.3. For the DDM,
the mathematical structure (the candidate functions) is taken directly from the Ostermeyer friction
model and an optimized parameter set is identified for the corresponding application. Thus, in this
study, only a subfunctionality of the DDM algorithm is used, but future work will also refer to the
finding of extended mathematical structures.

The resulting probability distributions for the six parameters are shown in the histograms in
Figure 12. This shows that all parameters are subject to certain variations.
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This parameter set is now passed to the eigenvalue solver to solve the eigenvalue problem
according to Equation (5), (see Figure 11, dark blue, lower path). The result is a set of eigenvalues,
of which the maximum real part of the complex eigenvalues is extracted as the determining stability
criterion. This results in 461 maximum real parts, each for one application that can be represented in a
probability density function. As with Coulomb’s model (see previous section), this procedure can be
used to model the aleatory uncertainty.

The upper path (light blue) in Figure 11 shows the procedure for the consideration of
epistemic uncertainties. In the case of the Ostermeyer friction model, further intermediate steps
are necessary here.

First, the time signal for µ and Tp is simulated for each application using the previously calculated
parameter set. This also results in a deviation between the measured values and the calculated values.
For application #1, these deviations are exemplarily shown in Figure 13.

The bias terms are subsequently taken into account (as in the studies with Coulomb’s friction
model), in the form of a band which considers the maximum and minimum value of the deviation for
COF and temperature. In order to evaluate this form of epistemic uncertainty, an artificial curve for
COF and temperature is then generated, which is above the original curves in the entire time domain
by the value of the maximum positive bias and another artificial curve, which is below the original
curves by the minimum bias. For each application, these artificial curves serve as an upper and lower
envelope for both the COF and the temperature. Since this is a coupled system with two dynamic
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variables, the determining combination of upper and lower envelopes for COF and temperature for
the eigenvalues is not known a priori.Vibration 2019, 3 FOR PEER REVIEW  17 

 

  
(a) (b) 

  
(c) (d) 

Figure 13. Bias terms of application #1: (a) bias term for µ over time, (b) histogram for bias of µ, (c) 
bias term for 𝑇 over time, and (d) histogram for bias of 𝑇. 

For this reason, all four combinations (min µ/min 𝑇, min µ/max 𝑇, max µ/min 𝑇, and max 
µ/max 𝑇 ) are now transferred to the DDM, so that four parameter sets are determined per 
application. For each of these parameter sets, eigenvalue analyses are performed and the largest real 
part is extracted. From these four real parts, the largest (for the maximum limit) and the smallest 
(minimum limit) are considered. These two extreme values accumulated from each application result 
in the two enveloping empirical cumulative distribution functions, shown below. 

Figure 14 shows the three corresponding curves (nominal, maximum, minimum) in one plot. At 
alpha-cut 0 (minimum and maximum) and 1 (nominal value) at max൫𝑅𝑒(𝜆)൯ = 0, the resulting values 
are (0.3991, 0.3883, 0.4121). The result for this exemplary system expresses that the probability of 
stability is most likely 39.91% and is definitely between 38.83% and 41.21%. Obviously and as 
expected, the accuracy of the statement using expert knowledge is much more precise. A comparison 
of the models of friction is presented in detail in the next section. 

 
Figure 14. Polymorphic uncertainty for Ostermeyer’s friction model. 

  

Interval of 
model 
uncertainty stable  instable 

Figure 13. Bias terms of application #1: (a) bias term for µ over time, (b) histogram for bias of µ, (c) bias
term for Tp over time, and (d) histogram for bias of Tp.

For this reason, all four combinations (min µ/min Tp, min µ/max Tp, max µ/min Tp, and max
µ/max Tp) are now transferred to the DDM, so that four parameter sets are determined per application.
For each of these parameter sets, eigenvalue analyses are performed and the largest real part is
extracted. From these four real parts, the largest (for the maximum limit) and the smallest (minimum
limit) are considered. These two extreme values accumulated from each application result in the two
enveloping empirical cumulative distribution functions, shown below.

Figure 14 shows the three corresponding curves (nominal, maximum, minimum) in one plot.
At alpha-cut 0 (minimum and maximum) and 1 (nominal value) at max(Re(λ)) = 0, the resulting
values are (0.3991, 0.3883, 0.4121). The result for this exemplary system expresses that the probability
of stability is most likely 39.91% and is definitely between 38.83% and 41.21%. Obviously and as
expected, the accuracy of the statement using expert knowledge is much more precise. A comparison
of the models of friction is presented in detail in the next section.
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3.3. Comparison and Interpretation

Figure 15 compares the nominal curves to both friction models: (a) histograms and (b) CDFs.
Here, it can be seen that the used friction models also have an influence on the nominal curves,
since a part of the system’s uncertainty can be reduced in the form of more precise friction models
(e.g., the dependence of the COF on the normal force). The corresponding characteristic values are:

• Coulomb model: mean value 0.0628, variance: 0.0249
• Ostermeyer model: mean value 0.0538, variance: 0.0215

Consequently, the variance using the Ostermeyer friction model is slightly smaller than that of
the Coulomb friction model. However, the difference is not as strong as for the epistemic uncertainties,
as shown below.
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Figure 15. Comparison of Coulomb’s friction model and Ostermeyer’s friction model with respect to
nominal uncertainties: (a) histogram and (b) cumulated density function.

Figure 16 shows a comparison of the model uncertainty using application #1 as an example.
The large bias in Coulomb’s friction model is mainly due to the fact that the time dependence of the
coefficient of friction cannot be represented by a constant. In contrast to this, it can be seen that by
considering the coefficient of friction as a time-dependent function, as is done in the Ostermeyer friction
model, an evenly small bias can be achieved over the interval. This particularly affects the width of the
uncertainty band, which was used for the uncertainty quantification in this study. Using application #1
as an example, for Coulomb’s friction model, the width of the uncertainty band for the COF is 0.043,
while it is 0.013 for Ostermeyer’s friction model (see Figure 15a).
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Figure 15 b compares the corresponding histograms. This shows a relatively small variance for
the Ostermeyer friction model in comparison to a large variance for Coulomb’s friction model.

The most decisive aspect for the original question, however, is the accuracy for the prediction with
regard to the probability of stability. The corresponding comparison is illustrated in Figure 17. It can
be clearly stated that the accuracy can be drastically improved by implementing the expert (a priori)
knowledge in the form of the Ostermeyer friction model. In this example, the model uncertainty
interval has been reduced from 38.6% to 2.38%.
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Figure 17. Comparison of Coulomb’s friction model and Ostermeyer’s friction model with respect to
polymorphic uncertainty and stability analysis.

Development engineers can also benefit from such improved informational values, as they can
use this to design their components more effectively. A further aspect is that the nominal values also
shift slightly between the different friction models. This is primarily due to the fact that the friction
model itself has an effect on the eigenvalues and even new ones are added. Thus, the Ostermeyer
friction model also provides more realistic results regarding the nominal value.

4. Conclusions

Comfort often plays a very important role in the development of numerous systems in mechanical
engineering. In particular, the investigation of NVH phenomena is at the forefront. A technical
brake system is a problem that has been intensively researched for this purpose. Numerous
measurements and calculations are carried out in industry and academia to improve the prediction of
NVH phenomena.

One of the major problems here is that the friction as an essential component is physically
insufficiently understood and therefore often only implemented with simple models. This paper
aims to evaluate methods of polymorphic uncertainty with regard to stability conclusions using an
established mechanical minimal model as an example. Initially, the focus is not on quantitative results
of certain particular brake systems, but rather on the potential of how this question can be effectively
addressed with the aid of uncertainty modeling.

For this purpose, the institute’s own measurement data from friction measurements of a partial
lining against a rotating disk were used. For these data, it has been exemplarily worked out how a
priori (expert) knowledge of friction models can improve the quality for a stability prediction. Two
different hypotheses (friction models) have been compared: Coulomb’s friction model (the simplest
friction model without expert knowledge) and Ostermeyer’s friction model (a physically- and
phenomenologically-derived friction model).
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The identification of the parameters of the friction models is conducted by a Data Driven Method,
which utilizes a sparse regression technique in combination with a Total Variation Regularization to
filter noise out of the data. The evaluation of the measured data indicates a large variation in terms
of parameters and thus also stability. This variation is due to the physical uncertainty, which cannot
be significantly reduced by a larger number of measurements. This aleatory uncertainty is taken into
account by probabilistic approaches that are statistically evaluating the individual parameters with
regard to the eigenvalues.

Another form of uncertainty is the deviation between the measured data and the
coefficient-of-friction-curves approximated with the friction models. This uncertainty can be reduced
by suitable friction models, which is why it is treated as epistemic uncertainty. In this paper, the nominal
value and the respective limits were determined, so that a possibilistic statement was added to the
probabilistic one.

In the studied systems, it has been proven that, as to be expected, the use of a more suitable
friction model can slightly reduce the uncertainties of the nominal solutions and drastically improve
the precision of the probability prediction for instabilities. In the economic sense, it can be concluded
that this aspect can be very worthwhile in the development of such technical systems, as it considerably
simplifies the design process. The procedure thus offers great future potential in the design of brake
systems or related systems.

This paper primarily concentrated on initial findings on uncertainty modeling with friction.
Future work will be devoted to the application of these methods to more complex mechanical (FEM)
models and to the fundamental question of how to identify aleatory and epistemic uncertainties in
friction measurement data. For this purpose, Data Driven Methods without expert knowledge will be
used and will be compared and coupled with the models based on expert knowledge. Special attention
must be paid to the fact that Data Driven Methods without any expert knowledge could also identify
mathematical artefacts instead of physical models.
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