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Abstract: The influence of stochastic fluctuations in the input angular rate of a class of single
axis mass-spring microelectromechanical (MEM) gyroscopes on the system stability is investigated.
A white noise fluctuation is introduced in the coupled 2-DOF model that represents the system
dynamics for the purposes of stability prediction. Numerical simulations are performed employing
the resulting set of stochastic differential equations (SDEs) that govern the system dynamics. The SDEs
are discretized using the higher-order Milstein scheme for numerical computations. Simulations
via the Euler scheme, as well as the measure of the largest Lyapunov exponent are employed for
validation purposes due to a lack of similar analytical solutions or experimental data. Responses have
been predicted under different noise fluctuation magnitudes and different input angular rates for
stability investigations. A parametric study is performed to estimate the noise intensity stability
threshold for a range of quality factor values at different input angular rates. The predicted results
show a nonlinear dependence of the threshold on the quality factors for different input rates.
Under typical gyroscope operating conditions, a realistic frequency mismatch appears to have
insignificant influence on system stability. It is envisaged that the present quantitative predictions
will aid improvements in performance, reliability, and the design process for this class of devices.

Keywords: gyroscope; stochastic differential equation; dynamic stability; white noise; frequency
mismatch; instability; angular rate fluctuation

1. Introduction

Numerous emerging applications use a micro-machined angular rate sensor or gyroscope as
a stand-alone unit or as part of an inertial measurement unit (IMU). In particular, traction control systems,
ride stabilization, and rollover detection in automotive applications currently use the micro-machined
angular rate gyroscopes. Many other applications, such as digital video camera stabilization systems,
missile guidance systems, and platform stabilization systems take advantage of using this class of device
(see, e.g., [1]). The low manufacturing cost, moderate performance, and miniature nature of these
gyroscopes are the reasons behind their acceptance in these applications [2]. The accuracy of this class
of devices is likely to be influenced by a number of sources, including a combination of temperature,
vibration, acoustic, shock, thermal cycling, and humidity [1]. For instance, microelectromechanical systems
(MEMS) devices can be exposed to shock during fabrication, deployment and operation [3], as well as
vibratory excitation resulting from the environment. The undesirable sources can change the dynamic
behavior of MEMS devices and, hence, affect their performance. For example, vibratory gyroscopic
systems in automotive applications are susceptible to environmental vibrations due to road unevenness
and due to other sources. The excitation from road irregularity is modeled as a stationary random process
with road roughness suggested in the ISO standard. Furthermore, white noise is often used to model the
input of road displacement excitation (see, e.g., [4]). An approximate modeling of rail track unevenness
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and road irregularities using a white noise excitation is also reported in the prediction of the random
vibration response of rail and land vehicles [5]. Aerospace, marine, and other applications are expected to
benefit from developments in this class of MEMS gyroscopes. In such applications, the effects of noise
and vibration, which stem from the aerodynamic/wave environment, as well as combustion process in
propellers, need to be investigated in detail.

MEMS-based gyroscopes, at present, are considered as low-accuracy rate-grade sensors compared
to the tactical and inertial-grade sensors which are known to have moderate to high accuracies.
However, MEMS-based gyroscopes offer cost and size advantages compared to the tactical and inertial
grade counterparts. Thus, to enhance the accuracy of MEMS-based gyroscopes to that of a tactical or
inertial grade, further improvements in accuracy, as well as their drift performance, are warranted.
To this end, several recent studies, as well as development efforts, are underway. Micro-machined
gyroscopes have different design and sensing principles, but almost all the configurations utilize the
transfer of energy between two vibration modes of a structure where the Coriolis’ effect is exploited for
the precise sensing of angular rotation rates. These devices, in contrast to the conventional gyroscopes,
do not contain rotating elements; thus, they are suitable for batch micro fabrication and miniaturization.
An external vibratory excitation is used in this class of MEMS device for their operation, but few
designs take advantage of parametric excitation (see, e.g., [6,7]).

In order to achieve further improvement and development of this class of sensors, dynamics and
stability of this type of gyroscopes have been of interest in the recent past. Mechanical coupling
between the drive and detection modes of a single mass-spring micro-machined vibratory gyroscope
was studied by Mochida et al. [8] giving importance to the mechanical coupling, then reducing the
coupling via the introduction of new designs and fabrication structures [8]. A precise mathematical
model for a dual-axis gyroscope was developed by Davis [9], and linear and non-linear suspensions
have been considered in this study. This gyroscope was fabricated in the laboratory, but required
further investigation prior to commercialization. In the same study, a more accurate model for the
single-mass spring gyroscope considering the coupling effect for both the driving and sensing axes has
been developed. However, in all of the above studies, instability investigations were not performed.
The effect of stochastic fluctuations in the input angular rate on the stability of a single-axis mass-spring
vibratory gyroscope has been investigated by Asokanthan and Wang [10]. An approximate analytical
method based on the stochastic averaging procedure has been employed to investigate the stability
of a vibratory MEMS gyroscope system. Closed-form conditions for mean-square stability of the
dynamic response are obtained for the case of exponentially correlated noise. It may be noted that
this study focussed only on narrow band frequency ranges that correspond to certain multiples and
combinations of system natural frequencies, and predictions for white-noise fluctuations were not
presented. Recently, a simplified two degree-of-freedom dynamic model of a ring-based gyroscope is
employed to identify the stability of the system when the input angular speed is exposed to random
fluctuations [11]. The system response is numerically predicted when the input angular rate is subjected
to a white noise fluctuation using the higher-order Milstein scheme that discretizes the governing
stochastic differential equations (SDEs). The stability threshold values for noise intensity have been
identified using largest Lyapunov exponents’ measure for various damping values. The current
study focuses on the stability of the single axis mass-spring gyroscope subjected to stochastic angular
speed fluctuation. It is known that use of white noise in the stability investigations presents a more
practical representation of the speed fluctuation generated by the environment when compared to the
consideration of harmonic vibration or narrow band noise. Thus, the introduction of white noise is
expected to predict a more accurate dynamic response of these devices, as well as the physical systems
they are mounted on. Hence, the effect of wide-band random fluctuation in the input angular rate
on the dynamic stability of the single axis mass-spring structure gyroscope is the main interest of the
present study.

Owing to the fact that obtaining a closed-form analytical solution for a multi-dimensional system
of stochastic differential equations is cumbersome due to their highly non-differentiable character of the



Vibration 2018, 1 71

realization of the Wiener process [12], a number of iterative approaches to integrate SDE’s numerically
have been developed in the recent past. The most widely used methods are Euler–Maruyama, Euler–Heun,
Milstein, derivative-free Milstein (Runge–Kutta approach), and stochastic Runge–Kutta [13]. In the
present study, the higher-order Milstein scheme is employed to simulate the time response so that the
stochastic response of a single axis mass-spring rate gyroscopes can be quantified for certain parameters of
interest. Based on the obtained responses, the behavior of the dynamical system is analyzed. To this end,
the characteristic Lyapunov exponents of the stochastic response is evaluated to determine the stability
thresholds. The effects of quality factors and the magnitude of the angular speed fluctuation, as well as the
frequency mismatch on system stability have been quantified.

2. Governing Equations

The single axis mass-spring rate gyroscope model used in the present study is based on the model
developed by Davis [9] and later presented in the work by Asokanthan and Wang [10]. The developed
governing equations for the gyroscopic system is employed to investigate the stochastic fluctuation
of the input angular rate. The gyroscope configuration consists of a lumped point mass (proof mass)
at the center and four springs that support the mass as shown in Figure 1 with dissipating linear
viscous damping. As a gyroscope, the mass is excited along the driving x-direction (also referred to as
the driving direction), by an external periodic force F(t) = F0 sinωt, where the excitation frequency
ω is chosen close to the natural frequency of the system. The gyroscopic system is subjected to
an input angular rate Ω about the z-axis where Ω represents the quantity to be measured. The mass is
constrained to oscillate in the x–y plane. Thus, a rotation rate, Ω, about the z-axis induces an oscillatory
Coriolis force in the y-axis direction (also referred to as the sensing axis). The y-axis oscillatory motion
is sensed and used as a basis for the measurement of the angular rate.
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Figure 1. Single-axis mass-spring gyroscope.

The system of coupled second-order differential equations that governs the motion of the
gyroscope derived by Davis [9] is presented as follows:

m
..
x + cx

.
x + kx x−mΩ2 x− 2mΩ

.
y−m

.
Ω y = F0 sinωt

m
..
y + cy

.
y + ky y−mΩ2 y + 2mΩ

.
x + m

.
Ω x = 0,

(1)

where m represents the proof mass. The coefficients cx and cy denote the viscous damping constants in
the x- and y-directions, respectively, while kx and ky are the spring constants in the x- and y-directions,
respectively. Additionally, the gyroscope angular rate measurement about the z-direction is denoted
by Ω. The main interest of this work is on examining the effects of some important parameters on
the system stability. Hence, the steady state part of the response does not play a role. To this end,
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consideration of the homogenous part of the equations of motion in the absence of the excitation force
is adequate. Equation (1) can then be written in matrix form:[

1 0
0 1

]
..
q +

[
ωx
Qx

−2Ω

2Ω
ωy
Qy

]
.
q +

[
ω2

x −Ω2 −
.

Ω
.

Ω ω2
y −Ω2

]
q = 0 (2)

with ω2
x = kx

m , ω2
y =

ky
m , Qx = mωx

cx
, and Qy =

mωy
cy

. The vector q represents the vector of the

system generalized coordinates, i.e.,[x y]T , while ωx and ωy, respectively, are the undamped natural
frequencies associated with the x- and y-directions. The quality factors representing damping in the
x and y directions are denoted by Qx and Qy, respectively. The quality factor is a dimensionless
parameter that indicates the energy losses within a resonant element. In general, energy dissipation in
vibratory MEMS is governed by several mechanisms, including viscous damping, dissipation through
the substrate, thermo-elastic dissipation, and resonator surface effects [14]. The quality factor indicates
energy loss relative to the amount of energy stored within the system. Thus, the higher the quality
factor the lower the rate of energy loss and, hence, oscillations will decay more slowly. It may be
noted that the stiffness matrix includes the centrifugal force term Ω2, which takes a negative value
for the present system. Hence, overall system stiffness decreases with higher angular velocity that
may lead to lower system stability. The damping matrix, apart from representing viscous dissipation,
includes the gyroscopic coupling term 2Ω, which is dependent on the input angular velocity. Moreover,
for a constant angular rate, the term

.
Ω = 0. This case is not practical in the presence of fluctuations

in the angular rate. However, for the system under investigation, the contributions of the associated
terms,

.
Ωq1 and −

.
Ωq2, are considered negligible when compared to the gyroscopic terms −2Ω

.
q1

and 2Ω
.
q2 at high angular rates where instability becomes an issue, it is sufficient to approximate

.
Ωq1 = −

.
Ωq2 = 0 for the purpose of stability analysis. Implications and limitations due to this

assumption are highlighted in the Results and Discussion section.
The numerical schemes to be used in the present study require the system equations to be

transformed to a set of first-order stochastic differential equation in incremental form. For this purpose,
Equation (1) is first transformed into a system of four first-order differential equations to accommodate
these methods. A set of four state variables is defined as x1 = q1, x2 =

.
q1, x3 = q2, and x4 =

.
q2,

and the random fluctuation in the input angular rate is then incorporated in the system to form
the governing equations of motion in the standard first-order SDE form. Equation (1) is written in
state-space form as:

.
x1 = x2,

.
x2 = −

(
ω2

x −Ω2
)

x1 −
ωx

Qx
x2 + 2Ω x4

.
x3 = x4,

.
x4 = −2Ωx2 −

(
ω2

y −Ω2
)

x3 −
ωy

Qy
x4.

(3)

The random fluctuations in the input angular velocity are assumed to be represented by a white
noise process. A Brownian motion function W(t) is employed for this purpose to simulate the random
fluctuations taking advantage of its first-time derivatives as Gaussian white noise (see, e.g., [15]).
Introducing white noise, ξ(t) = dW/dt, with a noise intensity magnitude, µ0, to the nominal input
angular velocity, Ω0, for representing the random fluctuations, the input angular velocity is written as:

Ω = Ω0 + µ0ξ(t). (4)

The centrifugal component in the equations of motion which are governed by the terms Ω2 in
Equations (3) can be evaluated using Equation (4) as:

Ω2 = Ω2
0 + 2µ0Ω0ξ(t) + µ2

0ξ2(t), (5)
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since the random fluctuation term, µ0ξ(t), is considered small relative to the nominal angular rate, Ω0,
the last term in Equation (5), µ2

0ξ2(t), is negligible due to its lower-order of smallness. In addition,
for the purposes of simulations, a noise intensity ratio, µ, is introduced to characterize the noise
intensity magnitude, µ0, as:

µ =
µ0 max(ξ(t))

max(Ω0)
. (6)

Combining (Equations (3)–(5)), a system of standard SDEs that represents the gyroscope motion
is obtained as: 

dx1

dx2

dx3

dx4

 =


a1[X(t)]
a2[X(t)]
a3[X(t)]
a4[X(t)]

dt +


b1[X(t)]
b2[X(t)]
b3[X(t)]
b4[X(t)]

dW, (7)

where the vectors a[X(t)] and b[X(t)], respectively, are known as the drift and the diffusion vectors
(see, e.g., [12,15]). For the present system, the vector elements written in terms of the state vector
X(t) = [x1 x2 x3 x4]

T are given by:

a1[X(t)] = x2, a2[X(t)] = −
(

ω2
x −Ω2

0

)
x1 −

ωx

Qx
x2 + 2Ω0x4,

a3[X(t)] = x4, a4[X(t)] = −2Ω0x2 −
(

ω2
y −Ω2

0

)
x3 −

ωy

Qy
x4,

b1[X(t)] = 0, b2[X(t)] = 2µ0Ω0x1 + 2µ0x4,

b3[X(t)] = 0, b4[X(t)] = −2µ0x2 + 2µ0Ω0x3.

3. Numerical Simulation Scheme

It is known that obtaining analytical solutions of the standard first-order stochastic differential
equations, which govern the gyroscope motion and were formulated in Section 2, is cumbersome,
the present study attempts to employ numerical solutions of such systems. To this end, the discretization
of SDE using Itô–Taylor expansion, which leads to the higher-order Milstein scheme [16], is employed.
The Milstein scheme is a numerical scheme for solving stochastic deferential equations with a strong order
of convergence. The method uses Itô’s lemma to increase the accuracy of the approximation by adding
the second-order term to approximate numerical solution of a stochastic differential equation. In this
technique, the sequence of values of the Milstein approximation at the instants of the time discretization
can be computed in a similar way to those of the deterministic case. The main difference is that we now
need to generate the random increments of the Wiener process. For a given time discretization, the Milstein
scheme determines values of the approximating process at the discretization times only. In order to clarify
the approach, the following first-order standard SDE for a scalar dependent variable is used:

dX(t) = a[X(t)]dt + b[X(t)]dW(t), (8)

along with an Itô–Taylor expansion, where a[X(t)] and b[X(t)], respectively, denote the drift and the
diffusion terms while dW(t) represents the driving Wiener process. Use of Itô’s Lemma leads to:

d f [X(t)] = L0a[X(t)]dt + L1b[X(t)]dW(t), (9)

where:

L0 ≡ ∂

∂t
+ a

∂

∂X
+

1
2

b2 ∂2

∂X2 , and L1 ≡ b
∂

∂X
.

When Itô’s Lemma is iterated to obtain constant integrands for the higher order terms,
and assuming that a and b are not direct functions of t, the integrated form of Equation (9) becomes:



Vibration 2018, 1 74

X(t) = X(t0) + a[X(t0)]

t∫
t0

ds1 + b[X(t0)]

t∫
t0

dW(s1)

+ b[X(t0)]b́[X(t0)]

{
1
2
[W(t)−W(t0)]

2 − 1
2
(t− t0)

}
+ O((δt)3/2)

(10)

where O((δt)3/2) represents terms that include (δt)3/2, or terms of higher order, and ´( ) denotes the
derivative with respect to variable X. This equation forms the theoretical basis for both Euler and
Milstein schemes [16]. It may be noted that the Euler scheme is constructed using the first three terms
of this expansion, while incorporation of the fourth term yields the Milstein scheme.

Considering the time interval [ti, ti+1] by choosing t0 = ti, t = ti+1, ∆t = ti+1 − ti and ∆Wi =

W(ti+1)−W(ti), the discretized form of the Milstein method is formulated as:

X(ti+1) = X(ti) + a[X(ti)]∆t + b[X(ti)]∆Wi +
1
2

b[X(ti)]b́[X(ti)]{(∆Wi)
2 − ∆t}. (11)

Equation (11), when extended to multi-dimensional systems, yields the uth component of the state
vector employing the Milstein scheme for numerical computations and takes the general form:

Xu(ti+1) = Xu(ti) + au[X(ti)]∆t +
m

∑
j=1

bu,j[X(ti)]∆Wj
i +

m

∑
j1,j2=1

Lj1bu,j2 [X(ti)]I(j1,j2) (12)

where the drift and diffusion terms, the driving Wiener process and the variables, are written in vector
form. In Equation (12):

Lj1 =
d

∑
k=1

bk,j1 [X(ti)]
∂

∂Xk , I(j1,j2) =

ti+1∫
ti

s1∫
ti

dW j1
s2 dW j2

s1

where b[X(ti)] is the diffusion coefficient matrix, d is the number of dimensions, and m represents the number
of independent Weiner processes [15]. In the special case when j1 = j2, the following integral is obtained:

I(j1,j2) =
1
2
{(∆Wj1

i )
2
− ∆t}.

The vector-based scheme presented in Equation (12), considering the system drift and diffusion
coefficient matrices, is employed for the purposes of performing numerical computations to solve the
system of equations that govern the gyroscope response. To this end, considering Equation (7) and
setting d to 4 and m to 1 in Equation (12), the response takes the form:

Xu(ti+1) = Xu(ti) + au[X(ti)]∆t + bu,1[X(ti)]∆Wi

+
4

∑
k=1

1
2

bk,1[X(ti)]
∂bu,1[X(ti)]

∂Xk {(∆Wi)
2 − ∆t}, u = 1, 2, . . . , d.

(13)

The resulting four equations are employed in the prediction of the gyroscope response.

4. Results and Discussion

In the present numerical study, a smooth increase of the input angular rate Ω0 from zero to
different practical values is employed for the purposes of response predictions considering a noise
intensity ratio µ as defined in Equation (6). For the purposes of numerical simulations, the parameters
of the single-axis gyro parameters as shown in Table 1 have been used.

Conforming to the goal of the present study, namely the stability investigation, the time response of
the gyroscope when subjected to appropriate initial disturbance is examined. In the simulations, an initial
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displacement of the driving coordinate, q1, is imposed with a value of 10−5 m and the displacement of sensing
coordinate q2 is then computed to evaluate the gyroscope response. However, for high quality factors, which are
typical in this class of devices, the convergence of the Milstein scheme is very slow even for a deterministic system.
In order to accelerate the convergence, the first two terms in Equation (13) which represent the deterministic part
of the numerical solution are evaluated using a fourth-order Runge–Kutta scheme and the values at each time
step are used in each iteration for obtaining the complete solution incorporating random terms.

Table 1. Single-axis gyroscope parameters [9].

Parameter Notation Value

Gyroscope mass m 3.6× 10−10 kg
Nominal X-axis natural frequency ωx 26.2 kHz
Nominal Y-axis natural frequency ωy 26.2 kHz

X-axis quality factor Qx 20–1000
Y-axis quality factor Qy 20–1000

The convergence of the simulation algorithm has been tested for many quality factors, Qx and Qy

ranging from 20 to 1000 for different relative noise intensity ratio values µ in the range of 6× 10−6 to 1.55 in
order to guarantee the accuracy, as well as the appropriateness, of the schemes. Very good convergence
has been reached for a time step of 1× 10−5 s; however, 1× 10−6 s is used for more accuracy and
a simulation time of 0.1 s is chosen for the simulations, which are adequate for the remainder of the study.
The higher-order Milstein scheme is known to achieve higher accuracy compared to the Euler method;
therefore, the first approach is chosen in the present investigations for stability predictions. Time responses
of the two methods for the purposes of verifying the response predictions are generated and depicted
in Figures 2–4. The figures show the responses of the gyroscope at different fluctuation magnitudes in
input angular rate at 2π rad/s demonstrating various stability behaviors. Maximum relative noise intensity,
as defined in Equation (6) has been used as a magnitude measure for representing environment fluctuation.
In Figure 2, the system response for quality factor of 500 and maximum relative noise intensity measure
µ = 0.0126 demonstrates a stable behavior for this sufficient level of damping. Increasing the noise intensity
to a sufficiently high value to cause a noticeable disturbance in the system, along with high enough quality
factors that do not suppress the oscillation, causes oscillatory motion as shown in Figure 3. It may be noted
that a certain threshold intensity measure for each quality factor is associated with the transition to instability
and this measure can be computed using the time responses. Thus, crossing this threshold with a high
quality factor or, alternatively, with higher noise intensity, leads to system instability, as shown in Figure 4.
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Further, it may be noted that the predicted responses from the Euler and Milstein schemes are
similar with slightly larger amplitude values for Milstein than the values predicted by the Euler
scheme, which does not take the higher-order terms into account. Thus, the Euler scheme produces
an under-predicted response and exhibits increased system stability compared to the Milstein scheme
predictions. Accordingly, under certain conditions of noise intensity values, which are close to the
threshold, a stable system behavior is predicted via the Euler scheme while an unstable system behavior
is predicted by the Milstein scheme, as depicted in Figure 5. Therefore, due to a lack of any exact
analytical or experimental results to verify the acquired data against, the accuracy of the employed
model should be assessed before performing the parameter sweep which includes varying the relevant
system parameters to characterize the system behavior. For this purpose, a measure for stability via
the largest Lyapunov exponent (LLE) method is employed to study the system dynamic stability of
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the two schemes. The concept of Lyapunov exponents is one of the most powerful tools for analyzing
nonlinear and stochastic systems. Lyapunov exponents quantify the rate at which orbits on an attractor
converge or diverge as the system evolves in time and provide a direct measure of the stability of
those orbits. One exponent is defined for each dimension, representing the average rate of growth
or decay along each of the principal axes in the dE-dimensional state space. The largest Lyapunov
exponent specifies the maximum average rate of divergence, or convergence of the orbits. Any system
with at least one positive Lyapunov exponent will inevitably become unstable, with the magnitude
of the exponent reflecting on the time scale that the system dynamics will diverge. For complicated
systems, determination of Lyapunov exponents analytically is, in general, impossible but calculating
them numerically using a time series is extremely attractive/easier [17]. Therefore, it is sufficient
to calculate the largest Lyapunov exponent for characterizing system stability. In the present study,
a practical use of the LLE search algorithm, based on the method of time delay as described in [18],
is utilized. Figure 6 shows the obtained threshold value of the noise intensity at which the onset of
system instability commences at an input angular rate of 2π rad/s.
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Figure 5. Under-prediction of results by Euler scheme.

The compatibility of the results from the Milstein and Euler schemes, as well as the error of
omitting the higher-order terms in the Euler scheme, have been further investigated through a number
of points utilizing the LLE. For this purpose, three points in a highly stable region with quality
factor values of 104, 413, and 706, and the respective maximum relative noise intensity values of
0.06505, 0.02670, and 0.01845 are chosen and displayed in Figure 6. The used algorithms yield negative
LLE values for these points indicating a stable system under these conditions. However, LLE values
evaluated by Euler’s scheme have been found to be lower than those predicted by Milstein scheme by
1.7–5.4%. It may be noted that the percentage difference is larger when the conditions are closer to the
threshold, while it is minimal when the system is highly stable or unstable. This character has also been
demonstrated via the time responses in Figures 2, 4 and 5. As expected, the time response predicted by
the Euler scheme tends to under-estimate the response when compared with that predicted via the
Milstein scheme. This may be attributed to the higher-order term participation, which are included
in the latter scheme. Further, the compatibility of the results of the two schemes in the marginal
stability region has been examined to show that the two systems produce approximately consistent
instability thresholds. Six marginal points as shown in Figure 6 have been chosen for this purpose,
three points slightly above the threshold points within the unstable region and three points slightly
below within the stable region. The LLE analysis for both schemes predict similar signs at each point,
which indicates a correct prediction of the stability at this marginal region. At this low angular speed,
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a small noise intensity of value 2.5% of angular speed is seen to affect the system stability for high
quality factors. Thus, values greater than this threshold are likely to destabilize the system.
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It is known that the gyroscopic systems are not immune to the external noise effects that can
alter their dynamic behavior. Such noise usually stems from environmental and operational sources
and can be exerted on the system at any frequency range depending on the source. Furthermore,
the allowance of noise effects on the MEMS system is an important design factor, especially at low
damping ratios (high quality factor) which is a characteristic feature of modern MEMS gyroscopic
systems. Therefore, a parametric study is performed to assess the noise intensity stability threshold
for a number of quality factor values at different input angular rates. To this end, an increment of
the system quality factor of approximately 50 is employed and the system noise stability threshold is
obtained via the bisection search method. Further refinement is employed in the low quality factor
region for analyzing the predicted time response. Figure 7 shows that the noise intensity threshold is
decreased at higher quality factors. Increasing the angular speed, for high quality factors, reduces the
fluctuation noise intensity threshold value to a value less than 1% of the angular speed. In such cases,
where the noise effects are of concern, use of an active disturbance rejection control has been shown to
eliminate/reduce the noise effects (see, e.g., [19]). It may be noted that the present study is limited to
the predictions of threshold values, while the actual applications, as well as the operating conditions
may dictate the absolute levels of fluctuation required to cause system instability. It is worth noting
that such predictions can only be achieved via laboratory or in situ measurements. The employed
approach uses the assumption of noise in angular rate in the absence of angular acceleration. Owing to
the non-differentiable nature of white noise, this term cannot be evaluated for the solution process
followed for numerically solving the resulting SDE. This assumption limits the inclusion of the angular
acceleration terms in the analysis; however, to overcome this difficulty, one can use the fluctuation in the
angular acceleration, for low angular velocities, which is typical in the case of gyroscopes. Alternatively,
a narrow band noise assumption for the angular velocity to simulate the velocity fluctuation is also
feasible. These approaches are likely to increase the prediction accuracies, but are beyond the scope of
the present study.
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In addition, studies performed on varying input angular rates of practical significance for typical
gyroscope applications revealed that the increase in angular velocity decreases noise thresholds.
Further studies on the effect of the frequency mismatch, which originates form asymmetry in both
of supporting springs stiffness and/or proof- mass are performed. A change of frequency mismatch
for low and moderate values in the range up to 10% seems to have insignificant effects on the noise
threshold. However, unrealistic frequency mismatch values close to 20% causes a reduction in the
noise threshold. It is worth noting that such values for the frequency mismatch are not of practical
significance under typical gyroscope operating conditions. It is expected that these results will lead
to the identification of critical stability regions for this class of devices, which can then improve the
device performance, reliability, and the design process.

5. Conclusions

The dynamic behavior of a mass-spring type MEMS-based single-axis vibratory gyroscope is
investigated when subjected to stochastic fluctuations in the input angular rate. The effect of random
fluctuations is introduced into the gyroscope governing equations to form stochastic differential
equations that are discretized using the Milstien scheme to predict the response numerically. The Euler
scheme, as well as the largest Lyapunov exponents, have also been used in this study as a validation
tool due to the lack of analytical solutions and experimental data. A nonlinear decreasing trend of the
obtained threshold values for the noise intensity at different quality factor values has been observed
while a similar decreasing trend of noise thresholds with the angular rate increase is also predicted.
Variations in the frequency mismatch have shown insignificant influence on system stability under
typical gyroscope operating conditions. It is envisaged that the present quantitative predictions will
lead to improvements in performance, reliability, and the design process for this class of devices via
identification of critical stability regions.

Author Contributions: M.B. and S.F.A. formulated the system model; M.B. performed the numerical simulations;
and M.B. and S.F.A. analyzed the results and wrote the manuscript.

Funding: This research was funded partially by Natural Science and Engineering Research Council (NSERC) of
Canada discovery grant, grant# RGPIN/250432-2012 and scholarship awarded to the first author by Libyan-North
American Scholarship program.



Vibration 2018, 1 80

Acknowledgments: The support of the Natural Science and Engineering Research Council (NSERC) of Canada
discovery grant and the Libyan-North American Scholarship program are acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision
to publish the results.

References

1. Acar, C.; Schofield, A.; Trusov, A.; Costlow, L.; Shkel, A. Environmentally robust MEMS vibratory gyroscopes
for automotive applications. IEEE Sens. J. 2009, 9, 1895–1906. [CrossRef]

2. Xing, H.; Hou, B.; Lin, Z.; Guo, M. Modeling and compensation of random drift of MEMS gyroscopes based on
least squares support vector machine optimized by chaotic particle swarm optimization. Sensors 2017, 17, 2335.
[CrossRef] [PubMed]

3. Younis, M.; Jordy, D.; Pitarresi, J. Computationally efficient approaches to characterize the dynamic response
of microstructures under mechanical shock. J. Microelectromech. Syst. 2007, 16, 628–638. [CrossRef]

4. Zuo, L.; Pei-Sheng, Z. Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions.
J. Vib. Acoust. 2013, 135. [CrossRef]

5. Schiehlen, W. White noise excitation of road vehicle structures. Sadhana 2006, 31, 487–503. [CrossRef]
6. Passaro, V.M.N.; Cuccovillo, A.; Vaiani, L.; De Carlo, M.; Campanella, C.E. Gyroscope technology and

applications: A review in the industrial perspective. Sensors 2017, 17. [CrossRef] [PubMed]
7. Hosseini-Pishrobat, M.; Keighobadi, J. Robust vibration control and angular velocity estimation of

a single-axis MEMS gyroscope using perturbation compensation. J. Intell. Robot. Syst. 2018, 90, 1–19.
[CrossRef]

8. Mochida, Y.; Tamura, M.; Ohwada, K. A micro machined vibrating rate gyroscope with independent beams
for the drive and detection modes. Sens. Actuator A Phys. 2000, 80, 170–178. [CrossRef]

9. Davis, W.O. Mechanical Analysis and Design of Vibratory Micro Machined Gyroscopes. Ph.D. Thesis,
University of California, Berkeley, CA, USA, 2001.

10. Asokanthan, S.F.; Wang, T. Dynamic instabilities in a single-axis gyroscope subjected to stochastic angular
rate perturbations. Probab. Eng. Mech. 2009, 24, 600–607.

11. Asokanthan, S.F.; Arghavan, S.; Bognash, M. Stability of ring-type MEMS gyroscopes subjected to stochastic
angular speed fluctuation. ASME. J. Vib. Acoust. 2017, 139, 040904–040907. [CrossRef]

12. Higham, D.J. An algorithmic introduction to numerical simulation of stochastic differential equations.
SIAM Rev. 2001, 43, 525–546. [CrossRef]

13. Schaffter, C.T. Numerical Integration of SDEs: A Short Tutorial; Swiss Federal Institute of Technology in
Lausanne (EPFL): Lausanne, Switzerland, Unpublished work; 2010.

14. Zotov, A.S.; Simon, B.R.; Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Quality factor maximization through
dynamic balancing of tuning fork resonator. IEEE Sens. J. 2014, 14, 2706–2714. [CrossRef]

15. Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin, Germany, 1999.
16. Higham, D.J.; Kloeden, P.E. MAPLE and MATLAB for Stochastic Differential Equations in Finance.

Programming Languages and Systems in Computational Economics and Finance; Nielson, S.B., Ed.; Springer Science
+ Business Media: Dordrecht, The Netherlands, 2002.

17. Yang, C.; Wu, Q. On stability analysis via Lyapunov exponents calculated from a time series using nonlinear
mapping-a case study. Nonlinear Dyn. 2010, 59, 239–257. [CrossRef]

18. Kliková, B.; Raidl, A. Reconstruction of phase space of dynamical systems using method of time delay. In WDS’11
Proceedings of the Contributed Papers: Part III—Physics; Matfyz Press: Prague, Czech Republic, 2011.

19. Zheng, Q.; Dong, L.; Lee, D.H.; Gao, Z. Active disturbance rejection control for MEMS gyroscopes. IEEE Trans.
Control Syst. Technol. 2009, 17, 1432–1438. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSEN.2009.2026466
http://dx.doi.org/10.3390/s17102335
http://www.ncbi.nlm.nih.gov/pubmed/29027952
http://dx.doi.org/10.1109/JMEMS.2007.896701
http://dx.doi.org/10.1115/1.4007562
http://dx.doi.org/10.1007/BF02716788
http://dx.doi.org/10.3390/s17102284
http://www.ncbi.nlm.nih.gov/pubmed/28991175
http://dx.doi.org/10.1007/s10846-018-0789-5
http://dx.doi.org/10.1016/S0924-4247(99)00263-0
http://dx.doi.org/10.1115/1.4036452
http://dx.doi.org/10.1137/S0036144500378302
http://dx.doi.org/10.1109/JSEN.2014.2314614
http://dx.doi.org/10.1007/s11071-009-9535-7
http://dx.doi.org/10.1109/TCST.2008.2008638
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Governing Equations 
	Numerical Simulation Scheme 
	Results and Discussion 
	Conclusions 
	References

